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Abstract. This paper describes the research focus and ideas incorpo-
rated in the UT Austin Villa 3D simulation soccer team entering the
RoboCup 3d Simulation competitions in 2023.

1 Introduction

In this paper, we describe the agent our team UT Austin Villa is currently devel-
oping for participation at the 2023 Robocup 3D Simulation Soccer competition.
The main challenge presented by the 3D simulation league is the low-level con-
trol of a humanoid robot with more than 20 degrees of freedom. The simulated
environment is a 3-dimensional world that models realistic physical forces such
as friction and gravity, in which teams of humanoid robots compete with each
other. Thus, the 3D simulation competition paves the way for progress towards
the guiding goal espoused by the RoboCup community, of pitting a team of 11
humanoid robots against a team of 11 human soccer players. Programming hu-
manoid agents in simulation, rather than in reality, brings with it several advan-
tages, such as making simplifying assumptions about the world, low installation
and operating costs, and the ability to automate experimental procedures. All
these factors contribute to the uniqueness of the 3D simulation league.

The approach adopted by our team UT Austin Villa to decompose agent
behavior is bottom-up in nature, comprising lower layers of joint control and
inverse kinematics, on top of which skills such as walking, kicking and turning are
developed. These in turn are tied together at the high level of strategic behavior.
Details of this architecture are presented in this paper, which is organized as
follows. Section 2 provides a brief overview of the 3D humanoid simulator. In
Section 3, we describe the design of the UT Austin Villa agent, and elaborate on
its skills in Section 4. In Section 5, we draw conclusions and present directions
for future work.



2 Brief Overview of Simulation Soccer

2007 was the first year of the 3D simulation competition in which the simulated
robot was a humanoid. The humanoid used in the 2007 RoboCup competitions in
Atlanta, U.S.A., was the Soccerbot, which was derived from the Fujitsu HOAP-
2 robot model.1 Owing to problems with the stability of the simulation, the
Soccerbot was replaced by the Aldebaran Nao robot2 at the 2008 RoboCup com-
petitions in Suzhou, China. The robot has 22 degrees of freedom: six in each leg,
four in each arm, and two in the neck and head. Figure 1 shows a visualization
of the Nao robot and the soccer field during a game. The agent described in the
following sections of this paper is developed for the Nao robot.

Each component of the robot’s body is modeled as a rigid body with a mass
that is connected to other components through joints. Torques may be applied
to the motors controlling the joints. A physics simulator (Open Dynamics En-
gine3) computes the transition dynamics of the system taking into consideration
the applied torques, forces of friction and gravity, collisions, etc. Sensation is
available to the robot through a camera mounted in its head, which provides
information about the positions of objects on the field every third cycle. This
information has a small amount of noise added to it and is also restricted to a
120◦ view cone. The visual information, however, does not provide a complete
description of state, as details such as joint orientations of other players and the
spin on the ball are not conveyed. Apart from the visual sensor, the agent also
gets information from touch sensors at the feet and accelerometer and gyro rate
sensors. The simulation progresses in discrete time intervals with period 0.02
seconds. At each simulation step, the agent receives sensory information and is
expected to return a 22-dimensional vector specifying torque values for the joint
motors.

Since 2007 was the year the humanoid was introduced to the 3D simulation
league, the major thrust in agent development thus far has been on developing
robotic skills such as walking, turning, and kicking. This has itself been a chal-
lenging task, and is work still in progress. High-level behaviors such as passing
and maintaining formations are beginning to emerge, and are now beginning
to play more of a role in determining the quality of play in addition to the
proficiency of the agent’s skills.

For a more in-depth history of the 3D simulation league see [1].

1 http://jp.fujitsu.com/group/automation/en/services/humanoid-robot/hoap2/
2 http://www.aldebaran-robotics.com/eng/
3 http://www.ode.org/

Fig. 1. On the left is a screenshot of the Nao agent, and on the right a view of the
soccer field during a 11 versus 11 game.



3 Agent Architecture

At intervals of 0.02 seconds, the agent receives sensory information from the
environment. Every third cycle a visual sensor provides distances and angles
to different objects on the field from the agent’s camera, which is located in
its head. It is relatively straightforward to build a world model by converting
this information about the objects into Cartesian coordinates. This of course
requires the robot to be able to localize itself for which we use a particle filter
incorporating both landmark and field line observations [7, 14]. In addition to
the vision perceptor, our agent also uses its accelerometer readings to determine
if it has fallen and employs its auditory channels for communication.

Once a world model is built, the agent’s control module is invoked. Figure
2 provides a schematic view of the control architecture of our humanoid soccer
agent.

Fig. 2. Schematic view of UT Austin Villa agent control architecture.

At the lowest level, the humanoid is controlled by specifying torques to each
of its joints. We implement this through PID controllers for each joint, which
take as input the desired angle of the joint and compute the appropriate torque.
Further, we use routines describing inverse kinematics for the arms and legs.
Given a target position and pose for the foot or the hand, our inverse kinematics
routine uses trigonometry to calculate the angles for the different joints along
the arm or the leg to achieve the specified target, if at all possible. The PID
control and inverse kinematics routines are used as primitives to describe the
agent’s skills, which are discussed in greater detail in Section 4.

Developing high-level strategy to coordinate the skills of the individual agents
is work in progress. Given the capabilities of the current set of skills, we employ
a high-level behavior for 11 versus 11 games as follows. We instruct the player
closest to the ball to go to it while other field player agents assume set forma-
tional positions on the field computed using Delaunay triangulation [2] based on
offset positions from the ball. Our predefined formations, as well as role assign-
ment to determine which agent should go to which position in the formation, are
described in [11]. Our role assignment functions minimize the makespan (time
for all agents to reach assigned target positions on the field) and are computed
quickly and efficiently in polynomial time using SCRAM role assignment al-
gorithms [18]. We have also developed and employed a marking system that



incorporates an extension to SCRAM role assignment for prioritized role assign-
ment [?]. When deciding where to kick the ball for a pass, agents use a learned
neural network scoring function to choose a location to kick the ball [24], and
then broadcast this location so that teammates may alter their assigned for-
mation positions and move toward the anticipated destination of the kick [14].
Unlike field players that are interchangeable and can be assigned to any field
player role position on the field, the goalie is instructed to stand a little in front
of our goal and, using a Kalman filter to track the ball, attempts to dive and
stop the ball if it comes near [26].

4 Player Skills

Our plan for developing the humanoid agent consists of first developing a reliable
set of skills, which can then be tied together by a module for high-level behavior.
Our foremost concern is locomotion. Bipedal locomotion is a well-studied prob-
lem (for example, see Pratt [28] and Ramamoorthy and Kuipers [29]). However,
it is hardly ever the case that approaches that work on one robot generalize in
an easy and natural manner to others. Programming a bipedal walk for a robot
demands careful consideration of the various constraints underlying it.

We experimented with several approaches to program a walk for the hu-
manoid robot, including monitoring its center of mass, specifying trajectories in
space for its feet, and using machine learning techniques to optimize a series of
fixed key frame poses for the agent to cycle through in order to walk and turn
in different directions [34]. After deciding that an omnidirectional walk gave
us the best chance for quickly moving and turning, we chose to use a double
linear inverted pendulum model based omnidirectional walk engine that was de-
signed by our standard platform league team for use on the physical Nao robots.
This walk engine, and associated optimization of parameters for the walk, are
described in [12].

When invoking the kicking skill, the agent chooses from several different kicks
as described in [27] and [13]. During kicking inverse kinematics is used to control
the kicking foot such that it follows an appropriate trajectory through the ball.
This trajectory is defined by set waypoints, ascertained through machine learn-
ing, relative to the ball along a cubic Hermite spline. For the 2014 competition
we were able to use learning by observation to develop and integrate new longer
kicks that can travel 20 meters as described in [4] and [14]. In 2015 we extended
agents’ repertoires of kicks to include variable distance kicks for accuracy, and
in doing so were able to execute set plays [16]. Kick selection was later tuned
for height in 2016 [20]. Fast walk kicks, which take less than 0.25 seconds to
execute, were added for the 2017 competition [23].

Two other useful skills for the robot are falling (for instance, by the goalie
to block a ball) and rising from a fallen position. We programmed the fall by
having the robot bend its knee, by virtue of which it would lose balance and
fall. Our routine for rising is divided into stages. If fallen face down, the robot
bends at the hips and stretches out its arms until it transfers weight to its feet,



at which point it can stand up by straightening the hip angle. If fallen face up,
the robot uses its arms to push its torso up, and then rocks its weight back to its
feet before straightening its legs to stand. We optimized the rising movements of
the robot for speed and stability as described in [13]. We also optimized goalie
dives to stop shots on goal [24].

Skills for getting up, walking, and kicking are optimized using an overlap-
ping layered learning approach [22]. Layered learning is a hierarchical machine
learning paradigm that enables learning of complex behaviors by incrementally
learning a series of sub-behaviors [30]. Overlapping layered learning is an ex-
tension to the paradigm that allows learning certain behaviors independently,
and then later stitching them together by learning at the “seams” where their
influences overlap. By using an overlapping layered learning approach we ensure
that newly learned skills by an agent will work together with previously learned
skills (the agent is able to stably transition between skills).

In 2019, skills were optimized to significantly reduce the probability of self-
collisions, and strategy changes were introduced to support a new pass mode
added to the competition—these changes were keys to winning the 2019 RoboCup
3D simulation competition [25]. In 2021 the main competition agent was largely
unchanged with the team focusing primarily on the development of a deep rein-
forcement learning framework for skill learning [17].

Videos of some our agent’s skills are available at our team’s homepage.4

5 Conclusions and Future Work

This paper has presented a high-level view of the architecture and design of
the UT Austin Villa agent. A fairly comprehensive and in-depth description of
our 2011 agent, which is the base for this year’s agent, is given in a technical
report [26].

The simulation of a humanoid robot opens up interesting problems for con-
trol, optimization, machine learning, and AI. While the main emphasis thus far
has been on getting a workable set of skills for the humanoid, for which con-
siderable headway has been made, there is now a shift in the league to working
on higher level behaviors as well. To expedite the progress being made in the
3D simulation domain, and promote participation and research efforts within
the league, UT Austin Villa has released a base set of the team’s code5 to serve
as a starting point for members of the research community [21]. A humanoid
soccer league with scope for research at multiple layers in the architecture offers
a unique challenge to the RoboCup community and augurs well for the future.
There are numerous vistas that research in the 3D humanoid simulation league is
yet to explore; these provide the inspiration and driving force behind UT Austin
Villa’s desire to participate in this league.

UT Austin Villa has been involved in the past in several research efforts
involving RoboCup domains. Kohl and Stone [10] used policy gradient techniques

4 http://www.cs.utexas.edu/ AustinVilla/sim/3Dsimulation/
5 UT Austin Villa base code release: https://github.com/LARG/utaustinvilla3d



to optimize the gait of an Aibo robot (4-legged league) for speed. Stone et al. [31]
introduced Keepaway, a subtask in 2D simulation soccer [3, 9], as a test-bed
for reinforcement learning, which has subsequently been researched extensively
by others (for example, Taylor and Stone [32], Kalyanakrishnan et al. [8], and
Taylor et al. [33]). Most recently the team has used the 3D simulation domain to
explore learning walks for bipedal locomotion (MacAlpine et al. [12], Farchy et
al. [5], and Hanna et al. [6]). Additionally, UT Austin Villa has used RoboCup
as a testbed for ad hoc teamwork research by creating drop-in player challenges
where robots programmed by different teams play soccer with each other without
pre-coordination [15, 19]. We are keen to continue our research initiative in the
3D simulation league.

Our initial focus for the 2023 robocup competition will be on continuing to
develop a deep reinforcement learning framework for skill learning [17] to realize
faster walks, longer kicks, etc. In particular, we hope to incorporate skills that
use reinforcement learning to learn a residual on top of a base behavior, similar
to the dribble by FC Portugal in the 2022 competition. Banking on a reliable
set of skills, we will seek to further develop higher level behaviors and strategy
such as passing, marking opponents, and set plays.
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