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Abstract. ITAndroids is a robotics competition group associated to the
Autonomous Computational Systems Laboratory (LAB-SCA) at Aero-
nautics Institute of Technology (ITA). ITAndroids is a strong team in
Latin America. Our 3D Soccer Simulation team started its activities
in 2012. Currently, our code is written in C++. This paper guides the
reader through the most important features of our code and work tools
developed, with a focus on the most recent developments.

1 Introduction

ITAndroids is a robotics research group at the Aeronautics Institute of Tech-
nology. As required by a complete endeavor in robotics, the group is multidisci-
plinary and contains about 60 students from different undergraduate engineering
courses. To motivate our research, we participate in robotics competitions. In
the last 11 years, we achieved good results in competitions, especially in Latin
America.

This paper describes our development efforts in the last years and points out
some improvements we want to implement in the near future. Sec. 2 describes our
team’s code structure. In Sec. 3, our new kick optimization was described. Sec.
4 explain our model’s inference migration to TensorFlow Lite. Sec. 5 presents an
implementation of a velocity saturation to avoid agent falls. Sec. 6 we show our
optimization to agent’s get up using CMA-ES. Sec. 7 concludes and shares our
ideas for future work.

http://www.itandroids.com.br
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2 Code Structure

The code has been planned and divided into several modularized parts so that
each part can be separated from the others with ease. Basically, it is divided into
7 layers. Each of them will be described in this section.

2.1 Communication

It is the layer that directly connects with the server, in order to receive messages
and send messages through sockets. This layer receives and sends a string as
described in the server’s website, following the protocol described in the Simspark
documentation.

2.2 Perception

The Perception layer is responsible for turning the strings received by the Com-
munication layer. This layer parses the string and converts it into a tree. The
layer then iterates over the created tree and creates new objects (perceptor ob-
jects) from it, so that the agent can have new information each new loop. Each
perceptor is as described in Simspark’s website.

2.3 Modeling

Modeling basically models the world state. It executes probabilistic stochastic
filters to determine where the robot is in the field, and where the other agents
are. Modeling is divided in two parts, a World Model and an Agent Model.

Agent Model The Agent Model models information related to the robot it-
self. It computes transformation matrices which are used to transform vision
observations from the camera coordinate system to a coordinate system on the
ground.

World Model TheWorld Model is responsible for modeling world states such as
game state, time, and position, so that this information can be used by Decision
Making. It runs the Localization algorithm in order to estimate the robot’s
position.

2.4 Decision Making

Decision Making is a layer that gives each agent a role. The roles assigned dictate
the movements the agent should take in order to successfully follow a determined
strategy. One agent cannot change its role, but, that role must be able to in-
tegrate all the possible behaviors the agent has available, e.g. a regular agent
receives the AttackingRole, while a goalie receives a GoalieRole. Decision Mak-
ing is also responsible for calling the Marking System to assign the navigation
targets for each agent. After the Behaviors are executed, the action requests
generated by them are updated.
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Behaviors Behavior is a set of what the agent can do in order to change its own
state. It is a set of instructions that goes from high to low level of abstraction,
in order to make the agent follow its strategy.

Each behavior can use other behaviors for a more abstract level of problem
solving. For example, Attack behavior can call upon NavigateToPosition so that
it does not have to be reimplemented in Attack. Each behavior creates an action
request, that is a communication interface with the Control layer, and it is how
the agent knows which specific action to take.

The Behavior layer (it is not exactly a layer, since it is part of Decision
Maker) has two parts, a part that is a data structure called BehaviorFactory,
and a structure called Behavior. A BehaviorFactory stores all behaviors, and
each behavior has access to all other behaviors through the Behavior Factory.

2.5 Control

Control is the layer that gets the requests from behavior and changes it into
more concrete things. For example, it takes a walk request created from one of
the behaviors and converts it into joints positions. It is where the movement
algorithms are implemented.

2.6 Action

The Action layer is responsible for converting all information that the agent has
created and that it wants to send to the server to a string in a way that the server
can recognize. Then, this string is sent to the server through the Communication
layer.

3 CMA-ES for Kick Optimization

As described in previous TDPs, our team has a kick learned through a neural
network. That kick works well in Standard NAO and NAO with toe, but is
not the same for Secondary NAO. In order to overcome this problem, we used
CMA-ES [1] to find a better adaptation of our kick for Secondary NAO.

The training method used for this kick was quite different from the methods
we used previously. In this one, the agent’s approach to the ball was considered
an attempt to avoid losing the opportunity to kick.

We used CMA-ES to find the best combinations of key frames for agent
use. Each key frame was tested several times, and the reward function 1 was
computed based on statistical metrics (mean and standard deviation).

reward = h̄− d̄y + d̄x ∗ 3
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Where h is the height of the ball during the movement, dx is the distance
between the initial and final point on axis x, dy is the same for axis y and f is
the number of falls until the agent could really kick. The numbers multiplying
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are the parameters’ weights. They are adjusted to normalize the maximum value
expected of each parameter, the denominator of the fraction, and the numerator
according to the importance of that parameter.

We consider that the kick that Secondary NAO agent learned now has a
performance similar to the kicks that other types of agents in our team use,
both in execution time, and accuracy. We also hope to devise other strategies to
create better kicking motions for all types of agents in the near future.

4 Migration from TensorFlow v1 to Tensorflow Lite

Since 2016, we have used TensorFlow v1 [2] to make the model’s inferences, which
was the option our team considered optimal at the time. Currently, however, it
has been discontinued, and alternatives, such as PyTorch [3], TensorFlow v2 and
TensorFlow Lite have shown themselves as reliable substitutes.

TensorFlow Lite is a mobile library for deploying models on mobile, micro-
controllers, and other edge devices. Because of that, TensorFlow Lite is lighter,
and its inferences are faster than those of other frameworks. Additionally, this
tool is easier to integrate and maintain. For the reasons described previously, we
opted for TensorFlow Lite.

To make this transition, our team had to adapt all classes with neural net-
works models, and rework a significant portion of the configuration files used to
build the code.

5 Navigation Helper

Like described in Subsection 2.5, our code has a control layer to translate the
movement request into a actual movement. However, the agent cannot walk at
all the requested speeds. Because of that, we have saturations of velocities for
axes x and y, but there is no saturation given an angle and an angular velocity.

Equations 2, 3, 4 and 5 were previously used to determine the saturation
walking speed in a particular direction.

θfactor = 1−min[
ω

ωmax
, 1] (2)

vn = (|v̂.x| ∗ vmax + |v̂.y| ∗ vy max) ∗ θfactor (3)

s = min[vn, |v|] (4)

vwalk = v̂ ∗ s (5)

Where v̂.r is the normal vector of v in r direction, vmax is maximum velocity
in forward or backward direction. This was not accurate at all, but it worked
reasonably well in past years. However, a better method is needed to continue
to improve in the league.
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To solve this problem with a more efficient method, we use a data-driven
solution. We want to find the velocity saturation given ω and θ, angular velocity
and angle. Given those parameters, the agent begins walking with a very low
velocity and gradually increases it until the agent falls, which is the saturation
velocity; we then save all of this information to train a neural network.

We run the previously described test for ω ∈ [−2π, 2π], our maximum angular
velocity, and for θ ∈ [0, π], assuming the agent’s symmetry. A neural network
was trained to trace this curve using the information that had been collected.
The model was trained with Keras [4] and transformed into a TensorFlow Lite
model, in accordance to Sec. 4.

Using a total of 11,265 parameters, the trained model has an input layer with
128 neurons, three hidden layers with 64, 32, and 16 neurons, respectively, and
an output layer with one neuron. We chose ADAM as the optimizer and used
mean square error as the loss function. Figure 1 is the prediction of the model
when the angular velocity is zero and the linear velocity’s angle changes from 0
to π. The result shows a non-linear response, as expected.
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Fig. 1: Linear velocity saturation values when there is no angular velocity.

6 CMA-ES for Get Up Optimization

Our agent’s old movement to get up was quite unstable, so he frequently falls
when attempting that movement. In an attempt to solve this problem, we use
CMA-ES to find the best group of key frames to get up. In the optimization,
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the agent starts lying on the floor, then tries to do the movement to get up.
The reward function associated with the optimization was straightforward: the
sum of the height of the agent’s center of mass at each simulation timestep.
This encourages it to get up as quickly as possible, and to stay upright, which
ultimately leads to a movement that is fast and reliable.

To evaluate the new set of key frames, a test based on Monte Carlo’s tech-
nique was used. First, the agent is positioned in the middle of the field and
forced to fall. Then, it starts to performing the optimization movement. At the
end of the episode, the test records whether the agent’s center of mass is above
a certain threshold, at which point we conclude it must still be standing, and
record the episode as a success. This test was executed a total of 300 times for
each key frame, and, while the agent with the new movement, got up in every
iteration, the one with the old movement failed in all of them.

Furthermore, that optimization was tested at the most recent Robocup Open
Brazil. In that competition, the movement was stable and faster than the previ-
ous one.

7 Conclusion and Future Work

Firstly, we would like to improve our agent’s position estimation algorithm,
which determine the position of their teammates, the opponents, the ball, and
its own. We have determined that the algorithm currently implemented in our
agents tends to diverge significantly in situations where it should not.

We are also devising a strategy based on control techniques to improve our
agent’s behavior when approaching the ball for a kick. The method currently
implemented has a very slow convergence, which frequently leads to lost goal, or
pass, opportunities.

Also, we are beginning a PID implementation to enhance the movement of
the agent’s approach to the ball at the moment of the kick. The current method
converts quite slowly; this may be due to an imprecise filter or an inaccurate
model.

Finally, we will enhance the algorithm for fighting for the ball. Now, based
on the states of the agent, such as whether it is standing up, the direction of the
player, and other parameters, we utilize a heuristic to calculate virtual distances.
We’ll approach the issue using a data-driven approach. First, we will run a Monte
Carlo simulation to collect data about all possible formations in the field and
the best agent to fight for the ball. With that data, we will use an algorithm,
possibly an XGBoost, to select the best agent for new situations.
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