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Abstract. FC Portugal, a team from the universities of Porto and
Aveiro, in Portugal, won the main competition of the 2022 RoboCup
3D Simulation League, with 17 wins, 1 tie and no losses. FC Portugal
also won the 2022 RoboCup 3D Simulation League Technical Challenge,
accumulating the maximum amount of points by ending first in its both
events: the Free/Scientific Challenge, and the Fat Proxy Challenge. The
team presented in this year’s competition was rebuilt from the ground
up since the last RoboCup. No previous code was used or adapted, with
the exception of the 6D pose estimation algorithm, and the get-up be-
haviors, which were re-optimized. This paper describes the team’s new
architecture and development approach. Key strategy elements include
team coordination, role management, formation, communication, skill
management and path planning. New lower-level skills were based on a
deterministic analytic model and a shallow neural network that learned
residual dynamics through reinforcement learning. This process, together
with an overlapped learning approach, improved seamless transitions,
learning time, and the behavior in terms of efficiency and stability. In
comparison with the previous team, the omnidirectional walk is stabler
and went from 0.70 m/s to 0.90 m/s, the long kick from 15 m to 19 m,
and the new close-control dribble reaches up to 1.41 m/s. The prepa-
ration for 2023 includes adapting to the new 3D simulation rules and
use the new python robust source code to continue to build a reinforce-
ment learning based team and foster high-level multi-agent coordination
strategies, goalkeeper skills, general ball handling skills, and more.

1 Introduction

Historically, FC Portugal has contributed to the simulation league (2D and 3D)
in numerous ways, including competitive methodologies and server improve-
ments. 1 In the last years, the team has been focused on developing low-level
skills and methodologies that leverage model knowledge to design more efficient

1 For previous contributions concerning coaching, visual debugging, team coor-
dination, sim-to-real, optimization algorithms and frameworks please refer to
https://tdp.robocup.org/tdp/2022-tdp-fcportugal3d-robocupsoccer-simulation-3d/
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reinforcement learning (RL) techniques [1–3, 6–9, 12, 13]. In 2019, it introduced
the first running behavior in the league, which was learned from scratch using
RL. After that, the development focus was on leveraging the robot’s symmetry
and analytical models to improve the learning efficiency, producing human-like
skills in less time. However, due to the intensive use of high-level optimization
algorithms, the low-level C++ code of the team grew more convoluted with a
network of interrelated skills and the addition of environment frameworks to
bridge the gap between C++ and Python. Maintenance complexity along with
lack of compatibility of some libraries with modern Linux distributions led to a
turning point in 2021.

After RoboCup 2021, we decided to rebuild all the code from the ground
up in Python, without using or adapting previous code, with the exception of
the 6D pose estimation algorithm [4], and the get-up behaviors, which were re-
optimized. The new code is compatible with most data science libraries and
machine learning repositories, allowing for fast development of new behaviors
and tactics. Due to hardware improvements in recent years, developing a team
in Python is no longer a major concern in terms of computational efficiency.
However, some computationally demanding modules were written in C++ to
ensure the agent is always synchronized with the server.

2 3D Simulation League

The RoboCup 3D simulation league uses SimSpark [14] as its physical multiagent
simulator, which is based on the Open Dynamics Engine library. The league’s
environment is a 30 m by 20 m soccer field containing several landmarks that can
be used for self-localization: goalposts, corner flags and lines. Each team consists
of 11 humanoid robots modeled after the NAO robot. Agents get internal data
(joints, accelerometer, gyroscope and foot pressure sensors) with a 1-step delay
every 0.02 s and visual data (restricted to a 120◦ vision cone) every 0.06 s. Agents
can send messages to teammates every 0.04 s (see Section 3.3 for further details).
There are 5 humanoid robot types with 22 to 24 controllable joints, and slightly
different physical characteristics. Each team must use at least 3 different types
during an official game. 2

3 Team Description

An overview of the agent and server can be seen in Fig. 1. The white and green
modules are implemented in Python and C++, respectively. The agent takes
advantage of Python’s development speed and compatibility with major data
science libraries, and C++’s performance for time-sensitive modules.

The server is responsible for updating the soccer environment, based on the
actions received from all agents. It adds noise to the world state in the form
of a calibration error that is constant and affects the robot’s vision sensor, a

2 The official rules can be found at https://ssim.robocup.org/3d-simulation/3d-rules/
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perception error that follows a normal distribution and affects the coordinates
of visible objects according to their distance, and a rounding error introduced
by a lossy transmitter, where all numbers (including coordinates, joint angles
and sensor readings) are rounded to the nearest hundredth.
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Fig. 1. Overview of the internal decision flow of agent and server, and their exter-
nal interaction. White modules are implemented in Python while green modules are
implemented in C++. Gray blocks represent static data.

As aforementioned, the agent receives internal data from the server every 20
ms, and visual data every 60 ms. The latter is a noisy partial view of the world
state, which is fed to a 6D pose estimator to extract the robot’s localization
and orientation in a three-dimensional space. The algorithm leverages the known
noise models to maximize the probability of the current map of perceived objects,
by iteratively adjusting the robot’s 6D pose. For an extensive description of this
process please refer to Abreu et al. [4]. Forward kinematics is then used to
estimate the pose of every body part for a given robot type. This self-awareness
ability in conjunction with team communication allows each agent to have a
reliable representation of the world state. The following paragraphs will describe
the main components of the agent.

3.1 Low-level control

The low-level control consists of an inverse kinematics module, used by the Walk
and Dribble, and a 1-step predictive controller, which is indirectly used by the
same skills, and directly used by the Kick and Get Up. The inverse kinematics
module simplifies locomotion by abstracting the joint information from the skill.
The Kick and Get Up do not use this module, as it did not improve the final
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behavior performance. Since the server sends the observations with a 1-step
delay, the current robot state can only be estimated by combining the previous
observations with the last sent actions. This technique is nearly optimal when
the actuators work below their maximum torque specifications, although the
lossy transmission protocol impedes actual optimality.

3.2 Mid-level skills

As depicted in Fig. 1, the team has four major skills:

– Kick: A short kick is mainly used for passes, with a controllable range be-
tween 3 and 9 m. The long kick is generally used for shooting, and has an
average distance of 17 to 19 m, depending on the robot type;

– Walk: The omnidirectional walk is able to sustain an average linear speed
between 0.70 and 0.90 m/s, depending on robot type and walking direction;

– Dribble: The dribble skill pushes the ball forward, retaining close control
with an avg. max. speed of 1.25 to 1.41 m/s, depending on robot type. The
walk skill can push the ball but it is slower and provides no close control;

– Get Up: The robot uses this skill to get up after falling to the ground.
There are three variations of the skill per robot type depending on the falling
direction (front, back, side).

The model architecture used for all skills that rely on neural networks can
be seen in Fig. 2. An underlying base model is used to guide the optimization
at an early stage, expediting the learning process and improving the quality
and human-likeness of the final behavior. For the Walk and Dribble skills, the
underlying model is based on a Linear Inverted Pendulum (LIP) solution, which
generates a cyclic walk-in-place behavior. The kick skill is built upon a hand-
tuned base model which is divided into two sections: back swing and forward
acceleration. The state of the base model is fed to the neural network as a single
integer variable. The state of the robot comprises its internal sensors, position
and velocity of joints, head height and a step counter. Depending on the skill,
the target denotes a set of variables that encode small variations of the main
objective, such as direction and distance. The relative position of the ball is
always required except for the Walk skill.

The output of the shallow neural network (single hidden layer with 64 neu-
rons) is added to the output of the base model to generate a target position
for each feet and hand. As shown in Fig. 1, only the Walk and Dribble skills
generate relative positions, thus requiring the inverse kinematics module to ob-
tain target joint angles. The optimization is performed by the Proximal Policy
Optimization algorithm [11], extended with Proximal Symmetry Loss [7].

3.3 Team communication

According to official rules, team communication is restricted to messages of 20
characters, taken from the ASCII subset [0x21, 0x7E], except for normal brackets
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Fig. 2. Model architecture for the Kick, Walk, and Dribble skills

{0x28,0x29}. However, due to server limitations, some characters create unde-
fined behaviors, such as single (0x27) or double (0x22) quotation marks, back-
slash (0x5C), and semicolon (0x3B) at the beginning of messages. Therefore,
FC Portugal uses 88 alternatives for the first character and 89 alternatives for
the remaining 19 characters, since the semicolon is included. This gives about
9.6×1038 combinations per message.

The team uses three consecutive messages to send all the desired informa-
tion. Accordingly, there are three distinct groups of variables, as seen in Table 1.
Group A contains the position of the ball, and the position and state of team-
mates number 10 and 11, and opponents from number 7 to 11. The state is a
Boolean indicating whether the agent has fallen. The position of a teammate has
a precision of 10 cm and x ∈ [−16, 16], y ∈ [−11, 11], yielding 321 ∗ 221 = 70941
combinations. Considering the position and state of the robot, each teammate
represents 141882 combinations. The opponents’ position has the same range
but lower precision (16 cm in x and 20 cm in y), generating 201∗111∗2 = 44622
(including the state). Finally, the position of the ball has a precision of 10 cm and
x ∈ [−15, 15], y ∈ [−10, 10], resulting in 301 ∗ 201 = 60501 combinations. Group
B contains information about 7 teammates, and group C combines 2 teammates
and 7 opponents.

Table 1. Description of message groups for the team communication protocol

Group Teammates Opponents Ball Combinations

A 10,11 7-11 Yes 141882ˆ2*44622ˆ5*60501=2.2e38

B 1-7 None No 141882ˆ7=1.2e36

C 8,9 1-6 No 141882ˆ2*44622ˆ6=1.6e38

The design of each group followed two principles: maximize the amount of
information per message, and gather entities that are usually seen together on
the field. Every agent can send messages at a given time step. However, the
server only broadcasts one of the messages to the whole team. Therefore, agents
should only try to communicate if they have relevant and up-to-date data. A
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naive rule would be to only send a message if all the elements of a given group
were recently seen. However, as an example, if group A was always visible, it
could monopolize the communication medium, or if teammate number 5 was
far from all the others, group B would never be sent. To solve these issues, a
protocol was proposed, as seen in Table 2.

Table 2. Team communication protocol

Time Step Round Group Max. RLP Max. MP Ball

0.00 s
1

A
0 0

is visible
0.04 s B -
0.08 s C -

0.12 s
2

A
1 -

is visible
0.16 s B -
0.20 s C -

0.24 s
3

A
2 -

is visible
0.28 s B -
0.32 s C -

0.36 s 1 ... ... ... ...

Message groups are synchronized with the game time, which is the provided
to all players by the server. There are three rounds of messages that are repeated
every 0.36 s. Each round contains messages from all groups in a sequential order:
A,B,C. Round 1 is the strictest, since an agent must see all the elements of the
current group before it is allowed to broadcast. This means that the maximum
number of recently lost players (RLP) and missing players (MP) is zero. The
former includes player not seen in the last 0.36 s and the latter encompasses
players that have not been seen in the last 3 s. Rounds 2 and 3 allow any
number of missing players, but apply restrictions to the number of recently lost
players. During a soccer match, missing players are typically far from the field
or have crashed and left the server. In both cases, it is generally safe to ignore
them. The main purpose of having rounds with different restrictions is to force
high quality updates in round 1, and, if that is currently not possible, allow some
losses in rounds 2 and 3. If a group is fully visible by any agent, all teammates
will receive new information every 0.12 s, even if there are missing players; if one
of the elements was recently lost, all teammates will be informed twice every
0.36 s; and if no agent has recently lost less than 2 elements from the current
group, all teammates will get a broadcast once every 0.36 s.

3.4 Role Manager

The role manager is responsible for dynamically assigning roles to each player.
Fig. 3 shows an overview of this process. The formation, shown on the left, indi-
cates the desired position of each role, not the current position of each teammate.
The red circles denote the actual position of the opponents. This example shows
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the formation when the team is attacking, i.e. the ball is closer to our team. The
displayed roles are: goalkeeper (GK), central back (CB), man-marking (MM),
left and right support (LS, RS), left and right front (LF, RF). The support
roles are always close to the active player (AP) to assist when ball possession
is lost, while the front roles are always closer to the opponent’s goal to receive
long passes. The man-marking roles mark the closest opponents to our goal in a
sticky way, to avoid frequent switching.
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Fig. 3. Overview of the role manager. The formation (left) represents the desired po-
sition of each role, depending on the ball and opponents. The decision flow (middle)
describes how the role manager assigns roles according to their precedence (right).

The decision flow of the role manager is shown on the middle of Fig. 3.
The world model provides the position and velocity of all players and ball. The
ball predictor yields a sequence of ball positions for future time steps, until the
ball stops completely. This information is combined with the maximum walking
speed to estimate when and where each player would intercept the ball. At this
point, it is possible to answer which player should go to the ball, and whether the
opponent will get there faster. If the latter is true, the defense mode is activated,
changing the role precedence, as indicated on the right of Fig. 3.

The roles with highest priority are the AP followed by the GK. Therefore,
if the closest player to the ball is the goalkeeper, it becomes the AP, and the
GK role will be assigned to another player. If the team is attacking, the next
roles are LF and RF, to create space and supporting angles for the AP. Then,
the low priority roles are assigned: LS, RS, 4 MM and CB. This assignment is
an optimization problem where the objective is to reduce the distance between
the player and the assigned role. However, the man-marking roles have differ-
ent weights, according to the distance of the marked opponent to our goal. In
general, the optimization algorithm prioritizes dangerous opponents, and gives
less importance to the CB, in relation to the LS and RS roles. If the team is
defending, after the AP and GK comes the Active Player 2 (AP2), and later the
Active Player 3 (AP3). The position of these roles is the ball position. Three
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player will try to intercept it until at least one of them is closer than the closest
opponent. In defense mode, there are no support roles, and the front roles are
the least important.

3.5 Path Planning

The path search algorithm is based on A* [5] and divides the soccer field into
70941 nodes (32 m × 22 m, 10 cm grid size). It is only employed when the player
is not able to walk to the objective in a straight line. When dribbling the ball, the
player is only allowed inside the field, reducing the work area to 30 m × 20 m.
Static obstacles include the goalposts and the goal net, while dynamic obstacles
include the players and the ball. Dynamic obstacles are identified by a 4-tuple
⟨position, hard radius, soft radius, cost⟩, where the hard radius defines the inac-
cessible region around the obstacle, and the soft radius defines a region with an
additional radially decreasing cost for the path search algorithm. When defining
a player as an obstacle, the hard radius takes into consideration the position of
each arm and leg, when possible, to avoid colliding with fallen players. The soft
radius depends on several factors:

– Is the agent walking or dribbling? If dribbling, the radius of other players
increases, since the maneuverability decreases;

– The radius of an opponent decreases when closer to the ball, to allow tackling;

– The radius of a teammate increases if it was assigned a more important role.

Regarding the last factor, the role precedence introduced in Fig. 3 is not only
used to assign roles to players. It is also important to ensure some additional
space is given to higher priority roles. As an example, when the team is defending
and there are 3 active players, AP2 will give extra space to AP (through a larger
soft radius), and AP3 will get away from AP and AP2. This also applies to
all the other roles. Players are not considered obstacles if their distance is over
4 m or they have not been seen (or perceived through team communication) for
longer than 0.5 s.

In order to achieve path stability, the initial path position is obtained by
estimating the position of the robot after 0.5 s, considering the current velocity
as a constant. To extract the current target for walking or dribbling, the number
of considered path segments depends on the current speed of the robot. This
technique generates a smooth path without losing too much accuracy.

This module was implemented in C++ due to its computational complexity.
To ensure that no simulation cycle is lost, the path planning algorithm runs until
the end or until a timeout (5 ms) expires. In the latter case, the best current
path is returned. Therefore, while running asynchronously with the server, the
performance of the team depends on the computational power of the host ma-
chine, but not to the point where it misses a significant amount of cycles, except
for abnormally slow host machines.
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3.6 Main Routine

The main routine is divided into 5 major steps as depicted in Fig. 4. The agent
starts by selecting a general intention from: move to some point, dribble the
ball, push the ball while walking, kick to pass or shoot, get up, or beam before a
kickoff. Some situations require a specific intention: the active player is required
to kick the ball during kickoff and other play modes, fallen players must get up,
inactive players must move to strategic position, etc. However, the active player
faces more complex scenarios where it must decide whether to dribble, push or
kick the ball.

Decide Intention Decide Skill Decide Target Execute Skill Broadcast

Move Dribble
Push Kick

Get Up Beam

Walk Dribble
Kick Get Up
Idle

Fig. 4. Major steps of the agent’s main routine

To reach a verdict, the algorithm scores multiple passes along a grid of feasible
options, and shooting alternatives if the goal is reachable, considering collisions
with non-fallen players, space to kick, orientation convenience for the kicker, and
error in the kick direction, which is more relevant as the distance increases. If
shooting is likely to be successful, the decision is immediate. Otherwise, passing
is only preferred if it allows a faster game progression than dribbling. When there
is no space to kick or dribble, the robot will push the ball by walking towards it.

The second step is to decide the current skill. As an example, if the agent
decides to kick or dribble, it must first walk until it is in the correct position
to use the desired skills. Then the agent must compute a target for the selected
skill, if required, e.g., a target position and orientation while walking. Finally,
the skill is executed, by applying the respective model and feeding the output
to the low-level controller. An extra step broadcasts visual information to other
teammates if the conditions are met, as explained in Section 3.3.

4 Competition Format

The main league competition was organized as shown in Fig. 5. The seeding
round groups were drawn randomly, after the best two teams from the previous
year were separated. Group A and B played a round-robin tournament that
dictated which teams were drawn for group C and D in round 1. In round 1, 2
and 3, the last two teams were eliminated. The last two teams in round 1 and
2 played for 7th to 10th place in group H, and the last two teams in round 3
played again for the 5th place. The four qualified teams in round 3 played the
semi-finals. As expected, the winners faced each other in the final and the losers
played for the 3rd place.
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Fig. 5. Main competition format

In addition to the main competition, there was a Technical Challenge, which
was composed of two events: the Free/Scientific Challenge, where competing
teams presented their research work in the context of the 3D simulation league;
and the Fat Proxy Challenge, which was played in a single round-robin tourna-
ment using the magmaFatProxy [10]. The purpose of the proxy is to provide the
same skills to all teams, preventing the agent from controlling the joints of the
robot, thus making the competition exclusively about high-level strategies. The
winner of the Technical Challenge is the team that accumulates more points in
both events.

5 Results

The results of the main competition are summarized in Fig. 6. FC Portugal
finished in first place without any loss, having 17 wins and only 1 tie during the
seeding round. 3 It managed to end in first place in the respective group of all
round-robin rounds. During the course of the competition, the team scored 84
goals while conceding only 2. In the final, it defeated the strong magmaOffenburg
team by 6-1.

Table 3 shows the scores obtained in the Free/Scientific and Fat Proxy chal-
lenges by each participating team. As aforementioned, the Technical Challenge is
won by the team that accumulates more points in both events. In each case, the
number of awarded points is 25−20∗ (rank−1)/(number of participants−1).

FC Portugal won both the Free/Scientific Challenge and the Fat Proxy Chal-
lenge, leading to a victory in the overall Technical Challenge with 50 points. The
presented scientific contribution introduced the dribble skill — the league’s first
close control dribble behavior, reaching speeds of up to 1.41 m/s. In the Fat
Proxy Challenge, the team registered 4 wins, no ties and no losses, 21 scored
goals and 3 conceded.

3 Official results can be found at https://cloud.robocup.org/s/ifX7TDsaHpCFWWH
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Fig. 6. Main competition results

Table 3. Technical Challenge results based on the number of points accumulated in
the Free/Scientific Challenge and the Fat Proxy Challenge

Team
Overall Free/Scientific Fat Proxy

Rank Points Rank Points Rank Points

FC Portugal 1 50 1 25 1 25

magmaOffenburg 2 25 3 5 2 20

BahiaRT 3 20 2 15 5 5

UT Austin Villa 4 15 – – 3 15

Wits-FC 5 10 – – 4 10

6 Conclusion

FC Portugal has developed numerous skills and methodologies concerning the
NAO humanoid robot and the simulation league in general. Currently, the team
has a very robust code base developed from scratch after RoboCup 2021, which
led to a victory in the 2022 RoboCup 3D simulation league, as well as the
Free/Scientific Challenge, the Fat Proxy Challenge, and consequently, the Tech-
nical Challenge. In the main competition it registered 17 wins, 1 tie, 0 losses, 84
goals scored, only 2 conceded, and in the Fat Proxy Challenge 4 wins, 0 ties, 0
losses, 21 goals scored, and 3 conceded.

An integrated learning approach guaranteed that skills such as the omnidi-
rectional walk, dribble and kick can attain high performance but also smooth
transitions, without falling or requiring intermediate steps. Despite the consid-
erable gain in performance and competitiveness, in comparison with previous
years, there are still many improvement opportunities. Future research direc-
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tions include high-level multi-agent coordination strategies, opponent modeling,
goalkeeper skills, omnidirectional kicks, optimization algorithms, and more.
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