
1 
TBRMS TDP RRL2K23 

ISTY UVSQ PARIS SCLAY  

RobCup Rescue 2023 Team Description 

Paper TBRMS 
Mendy Alphonse, Bruxelle Antoine, Aymeric Kwan, Tsakas Achille, Schroeyers Adrien 

 

Information                    

 Team Name:           TBRMS                                                  

 Team Institution:             ISTY UVSQ 

 Team Country:         FRANCE  

 Team Leader:                Mendy Alphonse 

 Team URL: 

Abstract 

This article details the configuration of the 

TBRMS robot planned to participate in the 

RoboCup Rescue 2023 challenge. The team's 

primary goal is to develop a robust semi-

autonomous system that directly assists the 

operator in controlling the robot by returning 

the vision mapping data needed to explore 

rough or inaccessible terrain. . To overcome 

these challenges, we had to make choices 

related to sensors and high-quality electronic 

components. We tried to make the robot as 

user-friendly as possible to reduce the 

execution time compared to existing robot 

rescue systems. 

I. Introduction 
Our team is composed of five students from 

the Institute des Sciences et Techniques des 

Yvelines (University of Versailles Saint 

Quentin en Yvelines) and we are 

participating for the first time in the RoboCup 

Rescue League in order to evaluate our 

performance in a global challenge. Our main 

mission is to integrate sensors and electronic 

components on a mechanical platform 

provided by our engineering school.  

Figure 1 Rescue TBRMS 

 

We seek to leverage the main features 

available to the robot. 

to push the limits of remote control of mobile 

robots. Our system is both semi-autonomous 

and hybrid due to human-computer 

collaboration. It is driven in differential mode 

and caterpillar mode depending on the type 

of terrain. Our platform is in line with search 

and rescue robots, it is distinguished by its 

speed of execution of tasks. 

II. System Description 

A. Hardware  
Refer to table 2 

1. Chassis 
We use a mechanical platform with two 
steering modes: the Caterpillar mode is 
provided by belts that drive the chassis and 
two tracks. The base we use can support the 

weight of the arm and all the integrated 
components. 
 

2. Arm and Manipulator 

We designed and built a 6-axis robotic arm 
with a custom gripper. The degrees of 
freedom the manipulator provides, and the 
custom gripper will be able to complete the 
manipulation tasks. 



2 
TBRMS TDP RRL2K23 

The arm will be capable of precise motion 

reaching about 80 cm in every direction with 
an accurate end effector positioning. 

We are working on developing our own 
gripper for the arm and we aim for it to be 
able to do all the tasks needed. 

3. Computer 

The robot uses a full desktop computer 
running Ubuntu 20.04 with ROS Noetic. We 
have an embedded computer (Jetson Nano) 
with Nvidia GPU TX1 and CUDA version 
10.1 to improve performance in data 
computation from sensors.  

4. Sensors 
RGB-D (Intel D435) camera will be used to 
send real-time video feedback and point 
clouds to the operator. A Hokuyo UTM-
30LX  
LIDAR and a RGB-D camera will be used for 
mapping, localization and obstacle 
avoidance.  
 
 

B. Software 

The operator is controlling the robot with a 
Gaming Console controller such as Xbox or 
PlayStation controller or with the keyboard of 
any computer that as the robot application. 
The Hokuyo and RGB-D camera will be 
connected directly to the embedded computer 
via USB. 
Communication to the robot from the 
operator’s station will be handled by a 
combination of UDP (User Datagram 
Protocol) and TCP (Transmission Control 
Protocol) calls over a single channel Wi-Fi 
connection. UDP will be used for 
teleoperation control and direct video 
feedback, while TCP will be used for less time 
sensitive data like map updates. 

i. SLAM 
Rescue robots are designed to navigate and 
operate in environments that are hazardous 
or inaccessible to humans. In order to 
navigate autonomously, these robots need to 
perceive their environment and create a map 
of their surroundings. One commonly used 
technique for achieving this is called 
Simultaneous Localization and Mapping 

(SLAM), which involves both building a map 

of the environment and estimating the robot's 
position within that map in real-time. 
 
Hokuyo lidar sensors are often used in 
conjunction with rescue robots for SLAM. A 
lidar sensor emits laser beams in multiple 
directions and measures the time it takes for 
the beams to reflect off objects and return to 
the sensor. By measuring the distance and 
angle of the reflected beams, the lidar can 
create a 2D point cloud that represents the 
robot's surroundings. This point cloud can be 
used to create a map of the environment, and 
to locate the robot's position within that map 
using SLAM algorithms. 
 
Hokuyo lidar sensors are a key component 
for SLAM on rescue robots, as they provide 
accurate and detailed information about the 
robot's surroundings, allowing it to navigate 
autonomously and effectively in hazardous 
or inaccessible environments. 
 

ii. Path planning 
The global map and point cloud data from the 
RGB-D camera will be used to plan the best 
path around obstacles. Obstacle avoidance 
will occur autonomously as the operator 

simply drives in the desired direction. When 
the flippers are added onto the drive train, the 
path planning will utilize them to navigate 
over obstacles, by setting their optimal angle 
for traversing over what is ahead of the robot. 
Development of this feature has already 
begun in simulation. 
 

iii. Manipulator control 

We are using the Moveit motion planner to 
perform path planning for the manipulator. 
Moveit allows us to pick a position in the 

attainable arm space and the arm will 
autonomously move and perform inverse 
kinematics. We can also control the end 
effector of the arm with Moveit. 

 
The trajectory that Moveit generates will also 
avoid the obstacles in the manipulator space 
such as the sensors on top of the robot. We 
can also visualize the robot trajectory in a 3D 
virtual environment (fig2). 

 



3 
TBRMS TDP RRL2K23 

Figure 2 Moveit Interface 

 

avoidance to prevent interference of the arm’s 
joints with the real world is performed, which 
will be helpful for pick-and-place tasks. 
Additionally, we have extended MoveIt! to 
improve its path planning capabilities, and 
our system can move its end effector along 
arbitrary paths specified in 3D. This will be 
helpful for tasks in which precise and 
repeatable motion of the end effector is 
required, such as opening doors. The 
operator can select from a range of predefined 
poses and paths, and is also able to position 
the end effector in a 3D virtual environment 
(see Figure 2) 

 
 
 

iv. Odometry for mapping and 

navigation 
To navigate and map its environment, 
odometry is an input to the mapping and 
navigation algorithm. To do this, we have 
three different sensors: an Intel RGB-D 
camera (D435), an optical flow sensor, and 
an IMU. The odometry software is part of the 
ROS workspace embedded in a Jetson Nano.  
The RGB-D camera is used to calculate the 

robot’s path using point clouds and 3D-3D & 
3D-2D correspondences. The software is 
coded in CUDA to take advantage of the 
GPU’s computational power of the 
embedded Jetson Nano. The visual odometry 
can suffer from drift, that’s why it is 
combined with an IMU using an Extended 
Kalman Filter for loosely-coupled system. In 
addition, as input to the EKF, we have 
another data from the optical flow sensor that 
is pointed toward the ground, under the 

robot’s chassis, to ensure path reconstitution 

reliability in dynamic environment. 
 
 

 

Figure 3 Odometry – Ros architecture 

 

C. Communication 

The communication between the robot and 

the operator station is done via a wireless 

network (Wi-Fi). The robot contains an 

internal Ethernet wired network used to 

interface with the Arduinos, the NVIDIA 

Jetson. 

For the communication via Ethernet, we used 

custom UDP frames between ROS and the 

Arduinos for the communication between the 

various ROS machines we used ROSTCP. 

The UDP frames circulate at 10Hz. In 

addition, we use UART to communicate at a 

low level with other microcontrollers or 

sensors from the Arduinos. We have also 

included a radio frequency controller that 

serves as an emergency stop. 

Figure 4 Communication Protocols 

 

D. Human Robot Interface 

The robot may be driven by one driver via the 

control interface. The interface is implemented 

as a Rqt node, with multiple plug-ins and 

provides a video feed from the on-board 

cameras, a click-and-drag map, an ROS 

message monitor, and a terminal. The GUI can 

be seen in Figure 5. Control will be semi-



4 
TBRMS TDP RRL2K23 

autonomous. The operator will control the 

direct the robot moves, but the robot will 

autonomously path plan for obstacle 

navigation. Manipulation will utilize inverse 

kinematics via MoveIt so that the operator can 

graphically set overall position goals relative to 

the robot in space that the arm will then perform 

(such as grasp an item, or place an item), rather 

than direct control of individual joints. On the 

outside of the robot chassis, a front panel is 

available to help control various parts of the 

robot. Ports for accessing the robot USB 

interface, display out, and charging the batteries 

allow for easier use of the robot without 

removing the arm to access the inside of the 

chassis. 

 

 

III. Robot application 

a) Setup 

The robot application programmed in QT 

runs on a computer using Linux Ubuntu 

20.04 and ROS Noetic 

 

 

Figure 5 Set-up on Gui 

 

With this robot application (image shown 

above) we can do several tasks. 

 

Outputs: 

❖ Selection between controller or keyboard 

control 

❖ Flipper angle selection 

❖ Caterpillar or differential mode selection 

❖ Stopping or starting the robot 

❖ Starting cartography, saving map  

❖ Starting navigation with existing map 

(by selecting the desired map) 

❖ Starting exploration (autonomous 

navigation and mapping) 

Inputs: 

❖ Control selected mode 

❖ Flipper angle 

❖ battery pourcentage 

❖ Camera  

❖ Navigation MAP (2D and 3D [point 

cloud]) and path/goal 

❖ Connection status 

❖ Robot feedback (custom debug error 

messages) 

 

b) Mapping 

Our robot is equipped with two lidars and 

cameras and can make a 2D mapping (using 

hector Slam) and 3D mapping (using 

OctoMap). (image XX :2D map made by our 

robot). We can make the mapping ourselves 

by controlling the robot manually, or with the 

exploration mode. 

Figure 6 2D Map 

 

c) Navigation mode 

The robot is using the move_base_flex 

algorithm server controlled by a behavior 

Tree. We are using Teb_Local_Planner and 

DWA for local planning and A* for global 

planning. We have custom recovery 

behaviors for dynamic or not obstacles. 

 



5 
TBRMS TDP RRL2K23 

d) Exploration Mode 

In this mode the robot is fully autonomous 
and does not need the computer application. 
When exploration mode is launched, the 
robot discovers his environment itself using 
the navigation mode and makes a 2D and 3D 
mapping; it can avoid dynamic obstacles and 
holes. Once the robot has finished the 
mapping it comes back to the starting point 

IV. Conclusion 

Finally, the team builds the software for 
testing. We are researching robots that are 

easy to operate and have high mobility on 
rough terrain. We would like to conduct these 
evaluations at RoboCup. When the results 
come out, I want to create a disaster site with 
a usable robot. 
 
 
 
 

Tab2 Hardware 

 

Tab 1 Softwares 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part Brand & Model Unit Price 

(euro) 
Drive Motors N/A N/A 
Drive gears N/A N/A 

Drive encoder N/A N/A 

Motor drivers Sabertooth dual 25A motor driver 125*2 
Batteries Red Power LiPo 14.8V 6500 

mAh 

110*4 

Computing 

Unit 
Nvidia Jetson Nano N/A 

Wi-Fi Adapter LinkSYS WRT54GL N/A 
LIDAR Lidar Hokuyo URG-04-LX-UG01 1200*2 
RGB-D 

Camera 
Intel Realsense D425 378 

Optical flow 

sensor 
Thonflow 3901UY 20 

IMU BNO055 40 
Cameras N/A N/A 
Infrared 

Camera 
N/A N/A 

Battery 

Chargers 
Any LiPo battery charger N/A 

6-axis Robot 

Arm 
Dynamixel MX-64 and AX-12 

Servomotors 

N/A 

Drive Train N/A N/A 
Operator 

Laptop 
Any Laptop N/A 

Name Version License Usage 
Ubuntu 20.4 open System 

ROS Noetic 
 

System 

OpenCV 4.2 
 

Vision 

Hector SLAM [3] 2020 
 

2D SLAM 

OctoMap 
  

Probabilistic 3D 

Mapping 
Image Transport 

  
Video Streaming 

Gazebo 11 
 

Modeling 
Rqt 5.12.8 

 
GUI 

 
 

  



6 
TBRMS TDP RRL2K23 

References 

[1] Review of visual odometry: types, 

approaches, challenges, and applications by 

Mohammad O. A. Aqel1*, Mohammad H. 

Marhaban2, M. Iqbal Saripan3 and Napsiah 

Bt. Ismail4 

[2] CUDA C++ Programming Guide 

Release 12.1 NVIDIA 

[3] VISUAL ODOMETRY for 

MOVING RGB-D CAMERAS BY 

Afonso Fontes 

Universidade de Fortaleza 

(UNIFOR) 

José Everardo Bessa Maia 

MACC 

Universidade Estadual do Ceará. 

(UECE) 

 

[4] VINS-Mono: A Robust and Versatile 

Monocular 

Visual-Inertial State Estimator 

Tong Qin, Peiliang Li, and Shaojie Shen 

 

 

 

 

 

 

 

 

 

Acknowledgement 

The authors thank the staff of the engineering 
school Isty. 
To provide support and space for our 
submissions 
Possible. We would also like to thank 
Blazevic Pierre and Zaoui Mohamed for their 
technical assistance. 
 

 

 

 

Figure 1 Rescue TBRMS ...................................... 1 

Figure 2 Moveit Interface ................................... 3 

Figure 3 Odometry – Ros architecture ............... 3 

Figure 4 Communication Protocols .................... 3 

Figure 6 2D Map ................................................. 4 

 

 

 

 

 

 

 

 

 

 


