
ROBOCUP RESCUE 2023 TDP COLLECTION 1

RRL2023 ALeRT Germany
Maximillian Kirsch, Shubham Pawar, Dennis Kroll, Christoph Gollok, Mahesh Vattekatt, Diksha Purohit,

Stefan Schiffer, René Rütters, Alexander Ferrein

Info
Team Name: ALeRT
Team Institution: FH Aachen, MASCOR Institute
Team Country: Germany
Team Email: alert@fh-aachen.de
Team Leader: Maximillian Kirsch
Team URL: ALeRT Website
Qualification Videos: MASCOR YT ALeRT

RoboCup Rescue TDP collection: None

Abstract—This paper presents the progress made by Team
ALeRT for the RoboCup RescueLeague using our quadruped
Spot robot from Boston Dynamics. We are a team of research
associates and students from the Mobile Autonomous Systems &
Cognitive Robotics Institute (MASCOR) at FH Aachen Univer-
sity of Applied Sciences.

Our development efforts focus on integrating Spot and all
associated devices and software into ROS 2. Specifically, we
aim to evaluate autonomy using golog++, which enables task
planning for deliberation, a critical aspect for rescue scenarios.

We are currently integrating sensors, grasping, automated
object labeling and human detection, image segmentation for
semantic reasoning, and a web-based graphical user interface
(GUI) for operators to facilitate autonomous behavior.

Index Terms—RoboCup Rescue, Team Description Paper, Spot,
ROS 2, golog++.

I. INTRODUCTION

ALERT, the Aachen Legged Rescue Team, is a team of
students and research staff from the MASCOR Institute

at the FH Aachen University of Applied Sciences that aims
to compete in the RoboCup RescueLeague. Though newly
founded, some of our members have prior experience in the
RoboCup through the LogisticLeague. We did not yet partici-
pate in any regional tournaments or publish scientific papers,
but we are actively planning to participate in the upcoming
German Open as a stepping stone towards qualification. We
also presented a poster on the current status of the development
of Spot with ROS 2 at the last RoboCup Symposium in
Bangkok.

To compete in the RescueLeague, we chose to use the
quadruped robot, Spot, by Boston Dynamics. Spot comes with
various functionalities such as teleoperation and navigation
with collision avoidance. Some of Spots functions are not open
including access to the low-level motor controls. Therefore
we cannot develop our own kinematic for Spot and have to
use the Spot SDK to control locomotion. We could setup our
own navigation on Spot with the Robot Operating System,
ROS 2 [1], [2], but due the high amount of requirements in
terms of sensors, vision and manipulation, we opted to use the
available functions of the Spot SDK, like navigation, where
possible, to allow us to invest more time in the open issues.

Fig. 1: Photo of our Spot with our major modifications

To prepare Spot for the Challenges in the RescueLeague
we began by implementing a ROS 2 driver for Spot or
respectively a wrapper between the Spot SDK and ROS 2
core functionalities.

Today, the Spot ROS 2 driver is an open-source package
maintained by the Boston Dynamics AI Institute and the MAS-
COR Institute. Concurrently, we created a robot simulation for
Spot in Webots, which enables us to test our software in a safe
environment and facilitate new team members’ understanding
of Spot’s architecture.

We then mounted and integrated various sensors and a
manipulator to fulfill the challenges of the RescueLeague. To
do this, we created and ported several packages to ROS 2,
including the Spot driver, a driver for the Kinova Jaco, and
hector slam [3] for GeoTIFF maps.

While we have yet to decide whether to control Spot via
teleoperation and autonomous background services or com-
plete autonomy, our long-term goal is to create and evaluate
complete autonomous behavior for Spot in rescue scenarios
with golog++ [4], [5], [6] agents. golog++ is an interfacing
and development framework for GOLOG [7], [8], [9], [10],
[11] languages, which are logic action languages that use
knowledge representation and reasoning for planning domains.
High-level controllers based on GOLOG have been used for
various domains such as robotic soccer [12] or domestic
service robotics [13].

In the next chapter, we describe the system architecture and
the hardware and software used.

II. SYSTEM DESCRIPTION

A. Hardware

We use the Boston Dynamics Spot as robot platform, with
an Intel NUC serving as the computing unit. The major

https://maskor.fh-aachen.de/projects/ALeRT/
https://www.youtube.com/playlist?list=PL7ChofkTYuU99ESqct4SuRIvBvMlWsQYP
https://maskor.fh-aachen.de/en/
https://dev.bostondynamics.com/
https://github.com/bdaiinstitute/spot_ros2
https://theaiinstitute.com/
https://cyberbotics.com/
https://github.com/skpawar1305/hector_slam_ros2


ROBOCUP RESCUE 2023 TDP COLLECTION 2

Fig. 2: Overview of the System Architecture.

modifications we did are to attach sensors, mount and integrate
the Kinova Jaco and creating power supplies for the necessary
devices. All network devices, including the LiDAR, manipula-
tor, and Spot itself, are connected via ethernet ports through a
router to the NUC. The hall, CO2 sensors and thermal cameras
are connected to the NUC through an ESP32, while devices
such as cameras and microphones that only require a USB
port are directly connected to the NUC. An overview of our
system architecture is shown in Fig. 2.

1) Locomotion: Spot is a quadruped robot with a max
speed of 1.6 m/s, max slope of ±30°and a max step height of
300mm. Also Spot has a max payload mounting weight of 14
kg. All details of the platform are found in the specifications.

2) Manipulation: To complete the DEX challenges we have
a Kinova Jaco (Tab. I) robotic arm. We want to evaluate if the
lightweight Kinova gripper is an alternative to the available
Spot Arm.

3) Power Supply: Spot has an unregulated DC voltage
output of 35-75V and a maximum power output of 150W per
port. At Port 1, we have hooked up a Boston Dynamics Spot-
GXP, which provides us with two power rails - 24V and 12V.

Fig. 3: From left to right, two A3144 hall sensor, an ESP32
microcontroller, below that MQ135 and MHZ-19B on right
side MLX90640 thermal camera.

The 12V is used to connect the sensors and the router. The
24V is converted to 19.2V with a buck converter to power the
NUC.

Due to the increased power consumption of the robot arm,
it is connected to port 2 of the Spot via a buck converter. The
voltage is 24V with a maximum current output of 6A.

The standby time for the batteries is 180 minutes, and their
average runtime is 90 minutes, depending on the payload.
However, we have not yet tested the power consumption when
the gripper is attached.

4) Sensors:
a) Mapping: For mapping, we utilize a Velodyne VLP-

16 3D-LiDAR. The Velodyne system enables larger scale map-
ping than that achievable with Spot’s five internal grayscale
stereo cameras.

b) Thermal/Magnetic: The thermal and magnetic sensors
are connected to the ESP32, which in turn is connected via
USB to our NUC. The setup is shown in Tab 3. Currently,
we plan to use data from the ESP32 pass it to the NUC and
publish the data via a ROS 2 Node. We need to conduct some
tests to determine wether micro-ROS is a viable alternative
to directly publish the sensordata from the ESP32 to ROS 2
instead of implementing a ROS 2 Node ourselfs.

c) Object Detection: To perform object detection, we
have installed three RealSense cameras, for which we have
prepared the necessary mounting. Our Spot model has five
grayscale cameras and by mounting additional RealSense
cameras, we are able to capture color information for more
accurate object detection.

B. Software

The operating system Ubuntu 22.04 runs on the NUC and
we use ROS 2 humble as middleware. Our objective is to
create a ROS 2 interface for every hardware device we use.

In cooperation with the Boston Dynamics AI Institute, we
developed a ROS 2 driver for Spot that enables the wrapping
of functions of the Spot SDK into ROS 2 topics, services, and
actions. With the ROS 2 Spot Driver, we can publish geometry

https://www.bostondynamics.com/sites/default/files/inline-files/spot-specifications.pdf


ROBOCUP RESCUE 2023 TDP COLLECTION 3

(a) The ROS 2 package depth-image-proc is used to transform depth images of Spots 5
internal cameras to a Pointcloud2

(b) RobotModel of Spot, Kinova Jaco and LiDAR in
RViz2

Fig. 4: Spot visualized in RViz2

twist messages to the cmd vel topic, start motors via services,
and send navigation goals with collision avoidance and more.
The Fig. 4a shows the visualization of Spot’s RobotModel and
the Pointcloud2 generated by Spot’s stereo cameras in RViz2.

Despite ROS 2 having been released years ago, many
packages are still only available for ROS. To address this, we
ported packages such as the Kinova Jaco manipulator driver
and hector slam to ROS 2 enables us to create GeoTIFF maps.

1) Low level control: To control the locomotion of the
quadruped robot Spot, we have to use the functions provided
by the Spot SDK. However, the SDK does not offer all of the
low-level functions necessary to directly control the robot’s
motors.

The Spot ROS 2 driver provides topics to control Spot’s
motion, including the cmd vel topic, which enables the direct
use of ROS 2 packages such as teleop twist keyboard and
teleop twist joy. Moreover, the driver enables the ability to
rotate Spot’s body in roll, pitch, and yaw and adjust its height
during movement from a minimum of 0.52m to a maximum of
0.7m. The different gait modes of the robot are also accessible
via ROS 2.

Furthermore, Spot comes equipped with a handheld con-
troller for tele-operation, allowing for easy remote control of
the robot’s movement.

2) Localization: The Spot SDK provides odometry data for
Spot, which can be accessed via a ROS 2 topic. Currently, we
are utilizing the internal odometry of Spot. However, we plan
to develop our own method of calculating the odometry data
in the future.

3) Mapping: Our mapping system leverages the Velodyne
VLP-16 sensor mounted on Spot to capture high-resolution 3D
data and generate maps. We use the efficient ROS 2 package
slam tool box for real-time generation of high-quality maps.
To produce a georeferenced map, we have adapted the hec-
tor geotiff package for ROS 2, allowing easy integration with
other geospatial data. A dedicated ROS 2 node locates and
marks detected objects within the GeoTIFF map, performing
the necessary transformation between the sensor and map

Fig. 5: GeoTIFF map generated by hector slam for ROS 2
with different objects marked inside Webots.

frame. A GeoTIFF map generated by hector slam is shown
in Fig. 5.

4) Navigation: Spot offers an easily accessible navigation
solution that can be controlled via a handheld device or the
Spot SDK. The Spot ROS 2 driver’s action server employs
the Spot SDK functions to manage requests to move to a
designated location. To cater to the RescueLeague’s diverse
requirements, we decided to use Spot’s in-built navigation
system with an interface through the Spot ROS 2 driver’s
action server.

In the long term, our goal is to incorporate open-source nav-
igation and path planning methodologies, such as navigation2
and slam tool box. With the integration of open-source tools,



ROBOCUP RESCUE 2023 TDP COLLECTION 4

we aim to expand the functionality of our system, ultimately
increasing its versatility and effectiveness in various settings.

5) Autonomy: To achieve autonomous behavior, we intend
to use the golog++ framework, which offers a GOLOG lan-
guage that can be executed on real robots. We had previously
developed a ROS interface for golog++ [4] and now we have
successfully ported it to ROS 2.

The golog++ language utilizes a Classical Planning Rep-
resentation, provides a planner but also allowing imperative
programming for simpler tasks that do not require a plan.
To provide a brief explanation, a golog++ program under-
goes transformation into a C++ object model and is subse-
quently executed by the READYLOG [14], [12] interpreter. The
golog++ language provides instantaneous actions that are
mapped to ROS 2 services, durative actions that are mapped
to ROS 2 actions and exogenous events that are mapped to
ROS 2 topic subscriptions.

6) Manipulation: Initially, we found only a ROS package
available for the Kinova Jaco. As we wanted to avoid the
use of the ros bridge, we had to port the package to ROS 2.
The Kinova Jaco utilizes its own library to calculate inverse
kinematics and reach a desired end position for all its joints.
Our next objective is to integrate the Kinova Jaco with
MoveIt! [15], which will allow us to create a collision box
for the arm in conjunction with Spot.

7) Vision: We are detecting landolt C orientations in five
steps: i) An image of a video stream is first converted to
grayscale. It is then filtered by adding blur. ii) The image is
converted to a binary mask with respect to threshold and indi-
vidual contours are found. iii) If the ratio of contour’s (convex
hull area)/(minimum enclosing area) is greater minimum circle
ratio, defect of the contour is found. iv) Again, if the depth
of this defect is greater than minimum depth, it is marked as
a gap. v) The orientations of gaps are calculated wrt to the
largest one always being ’Top’.

Also, a list of the orientations of landolt c’s (in descending
size order) is displayed in red. The Following orienations are
possible: Top (T), TopLeft (TL), Left (L), BottomLeft (BL),
Bottom (B), BottomRight (BR), Right (R), TopRight (TR) A
detection of landolt C orientation is shown in Fig. 6.

Finding hazmat signs: i) An object detection model is fine
tuned with YOLOv5 by Ultralytics, and then converted to
ONNX format. ii) The ONNX model is loaded with an Open-
VINO toolkit inference engine, and the bounding boxes are
drawn on the image for visualization. iii) For pose estimation
of a detected sign, the median depth point within the bounding
box is being used, which we get from RealSense cameras.

Finding victims: i) An instance segmentation model is
fine tuned with YOLOv5 by Ultralytics, and then converted
to ONNX format. ii) The ONNX model is loaded with an
OpenVINO toolkit [16] inference engine, and the bounding
boxes and masks are drawn on the image for visualization. iii)
For pose estimation of a detected victim, the median depth
point within the mask is being used, which we get from
RealSense cameras.

Finding QR codes: i) Image is first converted to grayscale.
It is then filtered by adding blur. ii) zbar library is used to find
QR codes in the image. iii) Using its 4 corners and solvepnp

Fig. 6: Landolt Detection: The green circles in output images
refer to the contour defects.

Fig. 7: Hazmat Detection of a non-flammable and dangerous
sign

Fig. 8: Baby Doll Detection with a Realsense using YOLOv5.

https://github.com/ultralytics/yolov5


ROBOCUP RESCUE 2023 TDP COLLECTION 5

Fig. 9: Qr-Code Detection: i) In the right image, the red dot
on the bounding box of the qr code denotes the top left corner
of the tag. ii) In the left image, the published transformation
is visualised with respect to the camera frame.

from OpenCV [17], the pose of the individual QR code is
found and a transform is published as well.

8) Communication protocol: All our devices have an inter-
face to ROS 2. The LiDAR and the manipulator are connected
via RJ45. Our RealSenes cameras are simply connected via
USB.

C. Communication

We use a Wifi connection to establish communication be-
tween the robot and the operator station. Unfortunately, we
have not yet determined any further details at this time.

D. Human-Robot Interface

Spot can be controlled using the handheld controller or
through ROS 2. For tele-operated tasks, we aim to incorporate
the SteamDeck into the tasks. In addition to the controller, the
operator can interact with Spot via the ROS 2 Spot driver. After
establishing an SSH connection from the operator’s laptop
to the NUC and starting the Spot driver, launch files can be
executed to initiate the necessary nodes for a given challenge.
Also topics can be visualized mit RViz2.

To provide a graphical user interface for the operator, we are
working on a web-based solution for Spot. Our objective is to
use ROSWebTools such as ROSboard to visualize all collected
data. Then, we intend to integrate buttons within the web GUI
which enable executing launch files, starting of nodes on Spot
and an emergency stop button.

III. APPLICATION

A. Set-up and Break-Down

Both Spot and Kinova come with their own travel cases.
Unfortunately, we do not yet have travel cases for the sensors,
operator station and other hardware, which is why we do not
have measure setup and breakdown times at the moment.

B. Mission Strategy

Following the latest team leader call and updated rulebook,
we must discuss our strategy for the RoboCup RescueLeague
within our team in more detail.

Our current idea involves utilizing a semi-autonomous sys-
tem, using multiple golog++ agents that can be executed
through a web GUI by the operator. Specifically, we aim to

completing the easier DEX tasks, detecting landolt objects,
identifying objects, finding baby dolls and mapping within the
new combo lane. We also plan to utilize additional sensors
like CO2, magnetic and a microphone for the challenges in
the RescueLeague.

Our strategy involves deploying Spot into the lane via a
golog++ agent, allowing it to search and solve possible tasks
through the execution of further golog++ agents executed by
the operator via the web interface. If Spot successfully solves
all tasks, the operator will send him back to the starting point
and begin a new repetition.

Given our lightweight gripper’s limited length and payload,
we must prioritize the easier DEX tasks that can realistically be
achieved. Our primary objective is to demonstrate our system’s
planning capabilities and integration with ROS 2 by evaluating
and integrating golog++ agents into various challenges and
tasks.

C. Experiments

For the qualification video, we constructed two lanes to test
Spot’s mobility. Spot performed well in the TER 2 challenge,
which involved navigating K-Rails on a Crossover Slope.
However, in the MAN 2 challenge, where the robot has
to step over two planks while maintaining ground contact,
Spot’s default configuration made it difficult to complete the
challenge successfully. We performed both challenges via tele-
operation using a keyboard.

In addition to the qualification video, we also tested our
developed Spot ROS 2 driver at an event last summer. Visitors
had the opportunity to move Spot through a parkour using
gestures, as shown in Figure 10.

To test our software, we also use our Webots Spot simula-
tion whenever possible.

D. Application in the Field

Quadruped robots are becoming increasingly popular due
to their impressive mobility, speed, and payload. As stated
by the manufacturer, Spot has a wide range of applications,
including remote inspection of hazardous environments, rescue
operations, and logistics operations.

A rescue scenario involves complex tasks and interactions
in different environments, including humans. Therefore, robots
require a higher level of autonomy for efficient deliberation.
golog++ allows for task planning on real robots, which is a
key element of deliberation.

We are currently developing a web GUI that is adapted for
the SteamDeck, which will make our system more accessible
and user-friendly. This web GUI will provide an interface
through which users can access Spot’s functions via a ROS 2
interface.

Once the web GUI is implemented, operators should be
able to control Spot in three different modes: tele-operated,
semi-autonomous and fully autonomous. This will offer them
greater flexibility in using the robot in various scenarios.
In addition, the produced data will be visualized, providing
operators an intuitive and easy-to-understand representation of
Spot’s actions.



ROBOCUP RESCUE 2023 TDP COLLECTION 6

(a) Spot walks with collision avoidance through a parkour with
ramps while being controlled by an operator’s gestures.

(b) GUI that visualize gesture detection with mediapipe
to recognize open and closed hand gestures for teleop-
erating Spot.

Fig. 10: Showcase of Spot moving through a maze controlled by adults and kids.

We believe that choosing ROS 2 over ROS has both
strengths and weaknesses. ROS has been used for years
and has become the state-of-the-art in terms of middlewares.
Additionally, there exists a ROS package for Spot, which was
first maintained by Clearpath Robotics but has since been
canceled.

Although ROS 2 has been around for several years, some
features have still not been ported. Nevertheless, we believe
that ROS 2 has more advantages in the long run. ROS will
reach its end of life in 2025, and there will be no official sup-
port from Open Robotics. The ROS-Industrial Consortium has
expressed its intention to continue supporting and maintaining
ROS, but it remains to be seen how much support ROS will
receive from the community after the official end-of-life date.

IV. CONCLUSION

In conclusion, the Aachen Legged Rescue Team (ALeRT)
is a newly founded team of students and research staff from
the MASCOR Institute at FH Aachen University of Applied
Sciences, whose aim is to compete in the RoboCup Res-
cueLeague. Although we have not yet participated in any
regional tournaments or published scientific papers, we are
actively planning to participate in the upcoming German Open
as a stepping stone towards qualification. Additionally, some
team members have participated successfully in the RoboCup
LogisticsLeague for several years.

To compete in the RescueLeague, we chose to use the
quadruped robot Spot by Boston Dynamics. We created a
ROS 2 driver for Spot, mounted and integrated various sensors,
and created and ported several packages to ROS 2, including
the Spot driver, a driver for the Kinova Jaco, and hector slam
for GeoTIFF maps.

The team’s long-term goal is to create and evaluate com-
plete autonomous behavior for Spot in rescue scenarios with
golog++ agents.

The mission strategy involves utilizing a semi-autonomous
system that uses multiple golog++ agents, which can be
executed through a web GUI by the operator.

TABLE I: Manipulation System

Attribute Value
Name Kinova Jaco
Reach 900 mm
Grip force 25 - 40 N
Degrees of freedom 4 or 6
System Weight 5.2 kg
Weight including transportation case ? kg
Transportation size ? x ? x ? m
Unpack and assembly time ?
Startup time (off to full operation) ?
Power consumption 25 W
Cost ? USD

APPENDIX A
TEAM MEMBERS AND THEIR CONTRIBUTIONS

• Maximillian Kirsch Spot ROS 2 driver, High-Level
• Shubham Pawar Object Detection, Mapping, Gripper
• Christoph Gollok System Integration
• Dennis Kroll Power Supply
• Mahesh Vattekatt Sensors
• Diksha Purohit Sensors
• Stefan Schiffer Advisor
• René Rütters Advisor, Sponsor
• Alexander Ferrein Advisor, Sponsor

APPENDIX B
LISTS

A. Systems List

Unfortunately, we have not yet developed a concept for an
operator station.

B. Hardware Components List

Hardware components list of our robot.

C. Software List

List of all relevant software packages we use.

https://www.researchgate.net/profile/Alexander-Ferrein


ROBOCUP RESCUE 2023 TDP COLLECTION 7

TABLE II: Robot Platform

Attribute Value
Name Spot
Locomotion quadruped
System Weight 32.7kg (72.1 lbs)
Weight including transportation case 47.6kg
Transportation size 927 x 546 x 464 mm
Typical operation size 1100 x 500 x 610 mm
Unpack and assembly time ? min
Startup time (off to full operation) ? min
Battery endurance (Average Runtime/ Standby) 90 / 180 min
Maximum speed 1.6 m/s
Payload 14 kg
Cost 60000 C

TABLE III: Operator Station

Attribute Value
Name ?
System Weight ? kg
Weight including transportation case ? kg
Transportation size ?x?x? m
Typical operation size ? ?x?x? m
Unpack and assembly time ? min
Startup time (off to full operation) ? min
Power consumption (idle/ typical/ max) ? (60 / 80 / 90 W)
Battery endurance (idle/ normal/ heavy load) ? (10 / 5 / 4 h)
Any other interesting attribute ?
Cost ? USD

ACKNOWLEDGMENT

We would like to express our gratitude to our sponsors and
advisors Alexander Ferrein, René Rütters, and Stefan Schiffer
for giving us the opportunity to realize this project and for
supporting us in all aspects.

We also extend our appreciation to the BDAI Institute, espe-
cially Jennifer Barry, Jiuguang Wang, and Daniel J. Gonzalez
for their continuous support and maintenance of the Spot
ROS 2 driver, and to everyone else who has contributed to
it.

Furthermore, we would like to thank Andrei Alexeev for
creating a concept for the documentation of our team.

Last but not least, we are grateful to FH Aachen, MASCOR
Institute, and everyone else who has supported us in any way.

REFERENCES

[1] C. Ken, “ROS high-level concepts documentation,” Open Source
Robotics Foundation, Tech. Rep., 2012. [Online]. Available: http:
//wiki.ros.org/ROS/Higher-LevelConcepts

TABLE IV: Hardware Components List

Part Brand & Model Unit Price Num.
DC/DC Converter 24V-19V ? 1

Battery Management Spot Battery Charging System - 1
Micro controller ESP32 20 C 1
Computing Unit Intel NUC7i5BNK 670 C 1

WiFi Adapter ? 1
IMU Xsens MTi-100 1.849 C 1

LiDAR Velodyne VLP-16 5000 C 1
Cameras RealSense 300 C 3

Thermal Camera MLX90640 120 C 1
CO2 Sensor MHZ-19B 35 C 1

Magnetic Sensor A3144 1 C 1
Router RUTX50 560 C 1

Rugged Operator Laptop Latitude 5421 1000 C 1
Batteries Spot Explorer Battery - 4

TABLE V: Software List

Name Version License Usage
Ubuntu 22.04 open
ROS 2 humble BSD

ROS 2 Spot Driver humble BSD
Spot SDK ? ?

ROS 2 Kinova Jaco Driver humble - Manipulation
OpenCV 4.0+ BSD landolt detection

yolo v5 ? Hazmat detection
ROS 2 hector slam - BSD GeoTIFF map

golog++ ? GPL-3.0 license High-Level Control

[2] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the
wild,” Science Robotics, vol. 7, no. 66, may 2022. [Online]. Available:
https://doi.org/10.1126%2Fscirobotics.abm6074

[3] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in Proc.
IEEE International Symposium on Safety, Security and Rescue Robotics
(SSRR). IEEE, November 2011.

[4] V. Mataré, T. Viehmann, T. Hofmann, G. Lakemeyer, A. Ferrein, and
S. Schiffer, “Portable high-level agent programming with golog++,” 01
2021, pp. 218–227.

[5] V. Mataré, S. Schiffer, and A. Ferrein, “golog++: An integrative system
design.” in Proceedings of the 11th Cognitive Robotics Workshop 2018
(CogRob@KR 2018), co-located with 16th International Conference on
Principles of Knowledge Representation and Reasoning, October 2018,
pp. 29–36.

[6] M. Kirsch, V. Mataré, A. Ferrein, and S. Schiffer, “Integrating golog++
and ros for practical and portable high-level control,” 01 2020, pp. 692–
699.

[7] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
“GOLOG: A logic programming language for dynamic domains,”
Journal of Logic Programming, vol. 31, no. 1–3, pp. 59–84, April-June
1997. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743106696001215

[8] G. De Giacomo, Y. Lespérance, and H. J. Levesque, “Reasoning about
concurrent execution, prioritized interrupts, and exogenous actions
in the situation calculus,” in IJCAI, vol. 97, 1997, pp. 1221–1226.
[Online]. Available: http://www.dis.uniroma1.it/degiacom/papers/1997/
DeLL97ijcai.pdf

[9] G. De Giacomo, Y. Lespérance, H. J. Levesque, and S. Sardina,
“Indigolog: A high-level programming language for embedded reasoning
agents,” in Multi-Agent Programming. Springer, 2009, pp. 31–72.

[10] A. Ferrein, G. Steinbauer, and S. Vassos, “Action-based imperative
programming with YAGI,” in Workshops at the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[11] A. Ferrein, C. Maier, C. Mühlbacher, T. Niemueller, G. Steinbauer,
and S. Vassos, “Controlling logistics robots with the action-based
language YAGI,” in International Conference on Intelligent Robotics
and Applications. Springer, 2016, pp. 525–537.

[12] A. Ferrein and G. Lakemeyer, “Logic-based robot control in highly
dynamic domains,” Robotics and Autonomous Systems, vol. 56, no. 11,
pp. 980–991, 2008.

[13] S. Schiffer, A. Ferrein, and G. Lakemeyer, “CAESAR: An intelligent
domestic service robot,” Intelligent Service Robotics, vol. 5, pp. 259–
273, 2012.

[14] A. Ferrein, “Robot controllers for highly dynamic environments with
real-time constraints,” KI - Künstliche Intelligenz, vol. 24, no. 2,
pp. 175–178, 2010. [Online]. Available: http://dx.doi.org/10.1007/
s13218-010-0041-3

[15] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics
& Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[16] A. Demidovskij, A. Tugaryov, A. Kashchikhin, A. Suvorov, Y. Tarkan,
F. Mikhail, and G. Yury, “Openvino deep learning workbench: Towards
analytical platform for neural networks inference optimization,” Journal
of Physics: Conference Series, vol. 1828, p. 012012, 02 2021.

[17] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief
introduction to opencv,” in 2012 Proceedings of the 35th International
Convention MIPRO, 2012, pp. 1725–1730.

http://wiki.ros.org/ROS/Higher-Level Concepts
http://wiki.ros.org/ROS/Higher-Level Concepts
http://example.com
http://example.com
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://ark.intel.com/content/www/de/de/ark/products/95061/intel-nuc-kit-nuc7i5bnk.html
http://example.com
https://www.xsens.com/hubfs/Downloads/Leaflets/mti-100-series.pdf
https://velodynelidar.com/products/puck/
https://www.intelrealsense.com/depth-camera-d435/
https://www.melexis.com/en/documents/documentation/datasheets/datasheet-mlx90640
https://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
https://www.alldatasheet.com/datasheet-pdf/pdf/55092/ALLEGRO/A3144.html
https://teltonika-networks.com/de/product/rutx50/
https://www.dell.com/de-de/shop/dell-notebooks/latitude-5421-laptop/spd/latitude-14-5421-laptop/gctol542114emea?redirectTo=SOC
http://example.com
http://www.ubuntu.com
http://www.ros.org
https://github.com/bdaiinstitute/spot_ros2
https://dev.bostondynamics.com/
http://opencv.org/
http://yolo.org/
https://github.com/skpawar1305/hector_slam_ros2
https://github.com/MASKOR/gologpp
https://doi.org/10.1126%2Fscirobotics.abm6074
http://www.sciencedirect.com/science/article/pii/S0743106696001215
http://www.sciencedirect.com/science/article/pii/S0743106696001215
http://www.dis.uniroma1.it/degiacom/papers/1997/DeLL97ijcai.pdf
http://www.dis.uniroma1.it/degiacom/papers/1997/DeLL97ijcai.pdf
http://dx.doi.org/10.1007/s13218-010-0041-3
http://dx.doi.org/10.1007/s13218-010-0041-3

	Introduction
	System Description
	Hardware
	Locomotion
	Manipulation
	Power Supply
	Sensors

	Software
	Low level control
	Localization
	Mapping
	Navigation
	Autonomy
	Manipulation
	Vision
	Communication protocol

	Communication
	Human-Robot Interface

	Application
	Set-up and Break-Down
	Mission Strategy
	Experiments
	Application in the Field

	Conclusion
	Appendix A: Team members and Their Contributions
	Appendix B: Lists
	Systems List
	Hardware Components List
	Software List

	References

