
Team Description Paper 2023 - AutonOhm

Sina Steinmueller, Tim Lachmann, Johannes Vollet, Dong Wang, Rolf Schmidt,
Sally Zeitler and Marco Masannek

University of Applied Sciences Nuremberg Georg-Simon-Ohm
Kesslerplatz 12, 90489 Nuremberg, Germany
steinmuellersi89050@th-nuernberg.de

https://www.th-nuernberg.de/en/faculties/efi/research/
laboratories-actively-involved-in-research/mobile-robotics/robocupwork/

Abstract. This paper presents the team AutonOhm and their solutions
to the challenges of the RoboCup@Work league. The hardware section
covers the robot setup of Ωmn3, which was developed using knowledge
from previous robots used by the team. Custom solution approaches
for the @Work navigation, perception, and manipulation tasks are dis-
cussed in the software section, as well as a control architecture for the
autonomous task completion.

1 Introduction

The RoboCup@Work league, established in 2012, focuses on the use of mobile
manipulators and their integration with automation equipment for performing
industrial-relevant tasks [1]. Participating robots must be able to navigate in a
previously known arena, reach different service areas and perform manipulation
tasks. Therefore, each robot must be able to correctly identify a requested ob-
ject on various background surfaces and pick and place the objects that vary in
shape, appearance and weight. With low participation numbers of teams after
the COVID-19 pandemic in the first on-site robocup at the world cup 2023 in
Bangkok, Thailand, major changes to the structure of the competition have been
made with the intention to ensure the future of the league. The main idea is to
make setting foot in the league more easy for newer teams, while still keeping the
ambition to target scientific problems in robotics in the more advanced stages
of the competition. Therefore, the competition has been split into two main sec-
tions, the beginner and the advanced section. The Beginner Section isolates or
simplifies some of the requirements for the robots so teams without much experi-
ence can successfully participate without having a competitive setup in relation
to the more advanced teams. The Advanced Section introduces a new (more
difficult) set of objects, aswell as incorporating Precise Placement and Rotat-
ing Table tasks into the newly introduced Advanced Transportation Tests. The
standalone Tests have therefore been removed from the competition schedule. As
these changes increase the upper treshold of skill required to do all tasks without
making mistakes, the option to replace the real objects with april-tagged cubes
has been introduced to relax the problem of object detection and manipulation.

https://www.th-nuernberg.de/en/faculties/efi/research/laboratories-actively-involved-in-research/mobile-robotics/robocupwork/
https://www.th-nuernberg.de/en/faculties/efi/research/laboratories-actively-involved-in-research/mobile-robotics/robocupwork/
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2 AutonOhm

The AutonOhm-@Work team at the University of Applied Sciences Nuremberg
Georg-Simon-Ohm was founded in September 2014. In 2017, the team was able
to win both the German (Magdeburg) and the World Championship (Nagoya)
title. With the knowledge and experience gained in the former tournaments, the
team was also able to defend both of these titles in 2018.

In late 2018 most of the members finished their studies, which is why the
team had to be rebuilt in 2019. Since then, the team consists of a small group
of “core” members and changing short-term members. In 2021 the AutonOHM-
@Work team won the SciRoc Challenge 2021 - Episode 5: Shopping Pick & Pack,
as well as the World Championship title in the RoboCup Worldwide competition.
Since late 2021 the team has welcomed new members.

Furthermore, the team defended the World Championship title in the RoboCup
Worldcup 2022.

3 Hardware Description

We are using a customized Evocortex[3] R&D platform with the smallest form
factor available. The platform is equipped with an omnidirectional mecanum
drive, an aluminum chassis capable of carrying loads up to 100 kg and a Li-
Ion Battery with a nominal voltage of 24V and roughly 12.5Ah capacity. In
our configuration, the platform does include any sensors, power management
or computation units, which means it only serves as our base. Every further
component needed was mounted in or on the chassis.

3.1 Sensors

Lidars Mapping, navigation and the detection of physical obstacles is performed
by three SICK TiM571 2D Lidars. One each is mounted at the front and the
back of the robot scanning 180◦. As this creates dead zones at the robot’s sides,
a third sensor was mounted centred at the bottom of the robot, resulting in a
full 360◦scan of the robot’s surroundings.

Fig. 2: 360◦fisheye camera setup

Cameras We use an Intel RealSense D435
3D-camera for the object perception. It is at-
tached to the manipulator so that it can be
positioned above the workstations to detect
the surface and the position of the objects.

For barriertape detection, multiple ELP
USB fisheye cameras can be mounted around
the robot, which enables a 360° view. During
the competition, we usually rely on a single
fisheye camera because we have observed that
all the barriertape is still detected.
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Fig. 1: Image of our Ωmn3

Fig. 2: Robot bottom

Fig. 3: Laser scan area

3.2 PC

The newly introduced neural networks require a GPU for computation onboard
of the robot. As embedded GPU chips such as the Nvidia Jetson TX2 do not
provide enough processing power for the task optimization and navigation algo-
rithms, we designed a custom PC solution consisting of an AMD Ryzen 3700x
processor, a mini-ATX mainboard and a low power Nvidia GTX1650 graphics
card, which is connected to the mainboard with a riser cable. This enabled us to
build a flat case with both the mainboard and the graphics card safely mounted
inside. The form factor of the case makes it possible to slide it into the robot’s
back, similar to a server rack.

3.3 PSU

We developed a custom PSU circuit board containing emergency switches for
the actuators, a main power switch and high efficiency voltage controllers for
5V and 12V. It is equipped with a custom designed plug system with selectable
voltage, so every peripheral device can be connected using the same plug type.
In addition to that, we use an adjustable DC-DC controller for the power supply
of the manipulator, as its power consumption exceeds the limits of the onboard
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controllers. For the custom PC system, we use a standard 250W automotive
ATX power supply.

3.4 Manipulator

Arm As our budget did not allow the purchase of an applicable robot arm, we
had to develop a custom solution. Industrial pick and place applications are often
solved with SCARA robot arms. However, the SCARA concept was not exactly
suitable for our purpose, which is why we combined the idea of a cylindrical
robot arm with joint arms.

The concept utilizes linear gears to control the z- and x-axis of the arm. In
combination with the first rotational z joint, the TCP can be moved to every
point (x, y, z) given within the operation area. For more flexibility, two additional
rotational joints (y and z) were added between the TCP and the linear x-axis to
compensate for the object and arm orientation. The actuators we used are simple
Dynamixel MX-106 and AX-64 motors, which were available in our laboratory.
They have enough power to control each axis, with the linear z axis being able
to lift up to 5 kg.

Most of the parts used were 3D printed using PETG material, including
some main mounting parts and all gears. The main bearing, the linear rail and
the full extension tray rails have to be purchased. Including the actuators, our
current configuration sums up to about 2,500 EUR. We are planning to release
the plans once the arm is fully developed, so that any student or research facility
can rebuild the arm for educational purposes.

Fig. 3: Gripper

Gripper The gripper concept also utilizes 3D
printed linear gears to convert the rotational force
of a motor into linear movement of the fingers. It is
based on a single Dynamixel AX-12 motor connected
to the driving gear. The power transmission enables
the motor to grasp objects with its full torque, rather
than it being reduced by a lever with its length con-
ditioned by the gripper fingers. The fin-ray fingers
are custom printed out of rubber filament, mak-
ing them soft and enabling them to close around
grasped objects. They are also more wide than stan-
dard FESTO fin-ray fingers. This gripper concept
is currently being revised to allow the use of force
feedback.

4 Software Description

We use Linux Ubuntu 18.04 and ROS Melodic [4] as our operating systems. A
custom software architecture was created to simplify the overall structure and
to regain system flexibility. Our new design is displayed in Figure 4.
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The idea derives from the Model-View-Controller software design pattern,
which is adjusted to the usage of the ROS framework. Regarding the frequent use
of hardware, an additional driver layer is added below the model layer. Models
that need data from hardware, e.g. sensor data, can get them from the individual
driver programs. The view layer is realized with each program using interfaces to
RVIZ or simple console logging, which makes custom implementations obsolete.
Components that require additional control features, such as the robot arm,
have dedicated controllers providing simple interfaces for the brain layer, which
is responsible for the actual task interpretation and execution. The individual
layer components will be explained in the following sections.

Fig. 4: Software Architecture - BCMD

4.1 Driver

The driver layer only contains actual hardware control programs, such as the
sensor interfaces. The idea here is that the whole layer can be replaced with
simulation tools such as Gazebo.

Base Platform The base platform driver converts incoming cmd vel messages
into wheel rpm and calculates the odometry from obtained rpm. It stops the
robot automatically if the incoming commands time out to prevent uncontrolled
movements. An additional twist mux node throttles incoming commands from
the joy controller, move base and the pose approach.

Laser Scanner Three sick tim nodes provide the interface to the scanners with
given IP address and scan area configuration. However, as the Lidar is prone
to measurement errors such as shadows or reflections, custom laser filters are
applied to the raw data for later computation.
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Camera We use the Intel Realsense SDK with the provided ROS wrapper. The
fisheye cameras are accessed via the ROS usb cam package[20].

Dynamixel Workbench The tower arm is controlled with a controller instance
of the dynamixel workbench package. It provides a trajectory interface to control
multiple motors at once, which we use for trajectory execution. As our gripper
also uses a dynamixel motor, but needs extended access to motor variables (e.g.
torque), a dedicated controller instance is used for the gripper controls and
feedback.

4.2 Model

Our models contain all algorithms used to challenge the problems of the tasks
in the @Work league. This includes localization, navigation and perception. The
task planner is not included as a model but in the brain layer because it is more
convenient to attach it directly to the task manager, as discussed in section 4.4.

Laser Filter As mentioned in section 4.1, we filter the raw laser data before
computing. The first filters are simple area filters to delete the robot’s wheels
from the scan. The second filter is a custom jumping point filter implementation.
We faced problems with reflections of the alu profile rails used for the walls of
the arena, which caused the robot to mark free space as occupied. The filter
calculates the x- and y-position for each scan point and checks if there are
enough neighbors in close range to mark a point as valid. All points with less
than n neighbors in the given range will be handled as measurement errors and
therefore deleted.

Ohm PF For localization in the arena, we use our own particle filter algorithm.
Its functionality is close to amcl localization, as described in [5] and [13]. The
algorithm is capable of using multiple laser scanners and an omnidirectional
movement model. Due to the Monte Carlo filtering approach, the localization is
robust and accurate enough to provide useful positioning data to the navigation
system. Positioning error with the particle filter is about 6 cm, depending on
the complexity and speed of the actual movement.

Move Base We use the ROS navigation stack [10] for global path planning
and the local path control loops. Path cost calculations are performed by using
the costmap 2D plugins. The base layer is a 2D laser map created with gmap-
ping [11,12]. On top of that, we use a barriertape map layer which contains all
detected barriertape points. For local obstacle avoidance, we added an obsta-
cle layer which includes laser data from all three laser scanners. All layers are
combined in the final inflation layer. Global path planning is computed with the
mcr global planner [17] while the path is executed using the TEB local plan-
ner [6,7,8,9]. As the local planner is not able to precisely navigate to a given
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goal pose, we set the goal tolerance relatively high. Once we reached our goal
with move base, we continue exact positioning with our custom controller, the
pose approach.

Pose Approach The pose approach package utilizes a simple PID controller to
move the robot to a given pose. It utilizes the robot’s localization pose as input
and the target pose as reference. As the controller does not consider costmap
obstacles, the maximum distance to the target is 20 cm to prevent collisions. A
laser monitor algorithm checks for obstacles in the current scan and stops the
robot if necessary.

Fisheye rectification The raw fisheye images need to be rectified to be used
as input for the detection network. A specific image pipeline fork [21] is used,
which contains this functionality.

NN - Barriertape For the barriertape detection, we use a U-Net with manually
labelled datasets. The ROS node receives raw input images and returns a masked
binary image. We have ported the network node from Python to C++ to increase
the detection rate from around 5Hz up to 20Hz.

NN - Objects The detection and classification of objects is done with a Tiny-
YOLO-v3 network. The node receives a raw input image and returns a vector
with the ID, bounding box and confidence of all objects that were found. As our
dataset would require more than 10,000 labelled images, which would require
a high amount of time to create, we have implemented an automated dataset
creation method using Blender and Python. It basically changes environments,
illumination, camera and object pose as well as object appearance in pre-defined
bounds. The script creates rendered images as well as bounding box, segmen-
tation and 6DoF labels. With this data generation method, data which is quite
similar to the original scene can be created, as well as rather abstract data (Fig-
ure 5). We are currently also working on data generation for deformable objects,
such as the objects used in the SciRoc Challenge 2021 - Episode 5: Shopping
Pick & Pack [19].

Using an original to artificial image ratio of 1:10, we achieved a detection
reliability of over 90% for most scenes. Our data generation scripts are public
and free to use [15]. The trained network is converted to TRT-Engine using
code from the TRT-YOLO-App from the Deepstream Reference Apps [16]. This
increases performance as the CUDA cores will be used more efficient, and makes
a detection rate of up to 60Hz possible. In the future, other network types such
as segmentation networks and 6DoF networks will be explored.
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(a) (b) (c)

Fig. 5: abstract image (a) corresponding mask label (b) abstract image with
bounding box label (c)

4.3 Controller

Model nodes that require additional control features are connected to control
nodes, which then provide interfaces for the brain layer. They use our robot-
custom msgs interfaces to share information about the subtask, workstation, or

objects. Nodes may have specific subtask types implemented into their behaviour
to react optimized.

Joy Control We use a PS5 joystick to move our robot manually (e.g. for
mapping). For this, we have implemented a custom teleop joy node with similar
functionality. We also plan to implement the usage of the PS5 feedback functions
such as rumble.

Barriertape Control The barriertape controller is a custom mapping imple-
mentation for visual obstacles. It throttles the input images to the barriertape
network and computes the masked images. Looping through multiple cameras
enables us to perform 360◦barriertape detection.

Received masked images are converted into a point cloud with a predefined
density. This pointcloud is then transformed from the individual camera frame
into the global map frame. Afterwards, all new points are compared to the ex-
isting map points. New barriertape points that are already occupied are ignored
to save computation. As we faced problems with image blur and therefore re-
sulting non-precise barriertape detection, we also compute pixels that mark free
space (no barriertape detected). They are compared to existing points, which
get deleted if they overlap.

The whole map is converted into an occupancy grid and then published
periodically, so it can be included in the costmap of the move base node. The
node is controlled via service calls, which enable or disable the detection loop.
The map is always published once the node finishes the init process.

Arm Control As the kinematic model of the tower arm has only one solution
for a given TCP position, we developed a custom arm controller node instead
of using moveIt. It is possible to adjust the amount and type of joints and links
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via ROS parameters, only the inverse kinematics solution has to be adjusted
for new arms. Using predefined danger zones, the arm executes a self calculated
trajectory to the target pose considering the individual motor parameters. The
arm is controlled via ROS services or a development GUI for debugging. When
using the services, the arm executes a full task using the given information,
which means, in case of a pick task, it moves the TCP to the object position,
closes the gripper, and stores the object. After the subtask finishes, feedback of
the exit status is returned to the caller.

Perception Control The perception control node is responsible for the work-
station analysis and object detection from a given scene (3D Pointcloud and
RGB image). First, the surface equation of the workstation is calculated using
the RANSAC [14] algorithm. If a valid result is obtained, raw images are sent to
the object perception network (4.2). All found objects are then localized using
the pinhole camera model, the workstation plane and the bounding box pixels.
Finally, the position is transformed into the workstation frame and saved. For
moving objects, multiple positions are recorded and then used to calculate the
movement equation with RANSAC.

4.4 Brain

The brain layer provides nodes which contain the intelligence of the robot, which
means the tracking of itself, its environment and the received tasks.

Worldmodel All data obtained about the robot’s environment is stored in the
worldmodel database. This includes the map, all workstation positions and all
detected objects on the workstations. The data can be accessed using service
calls.

Status Monitor The status monitor keeps track of the robot itself. It saves
the current pose, inventory and state. The associated color code is sent to the
RGB LED driver node.

Task Manager The robot can receive tasks from multiple sources, such as the
RefBox or voice commands. In order to process different input formats, different
parsers are used to standardize the input for the task manager.

When the robot receives a new transportation task, it is analysed and planned
before the execution. All extracted subtasks are managed by the task manager
node, which replans the order of all subtasks. With the increasing numbers
of transportation tasks in the competition, high efficiency is crucial to achieve
perfect runs. The score of a single subtask is calculated considering expected
duration, points, and the risk of failure. These factors may change if certain
conditions are met, for example, the navigation time is set to zero if the robot
already is at the given position.
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Before even starting the planning of subtasks, the received task is analysed
for impossible tasks. This would be the case if the target workstation is unknown
or unreachable, or an object is lost. All subtasks that cannot be executed are
moved to a deletion vector.

A self developed planning algorithm then calculates the raw score of the
remaining subtask vector, followed by a simple nearest neighbour search (NN).
This result is then fed to a recursive tree calculation method, which searches
for the optimal solution. A branch is only fully calculated if the score sum does
not exceed the best solution found with the NN. This way, we have achieved an
overall planning time for the BTT3 challenge (14 subtasks) of around 10s. For
subtask numbers below 12 the planning only takes 2s. If the task load exceeds
14 tasks, we skip the recursive strategy, as planning time grows exponentially
and therefore cannot produce results in the given time frame of a run.

Fig. 6: Task Manager States

After planning, every subtask is sent to the task executioner (section 4.4).
If the execution was not successful, the task is moved to a failed subtask vector
and deleted from the current working STV. The short planning times enable us
to replan every time a subtask fails, or new data is available. This is necessary
because even simple changes can cause serious errors in the intentional plan.
If certain paths are blocked, the navigation time for transportation tasks can
increase dramatically, causing a huge loss of efficiency. A final garbage collection
checks all deleted and failed subtasks for plausibility again and adds retries for
possible subtasks.

Task Executioner Subtasks that are sent to the Task Executioner get run
through an interpreter to extract the actions that are necessary for the task
execution. All actions are performed in custom states, which can be adjusted
via parameters at creation. The interpreter uses information from the status
monitor, the worldmodel and the given subtask to create substates accordingly.
The resulting state vector is iterated until finished or failed. While executing,
the node reads and modifies the data in the status monitor and worldmodel
package. This way, every change is immediately available for all other nodes too.
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Fig. 7: Task Executioner - Subtask Interpretation

5 Conclusion and Future Work

During the last season, we optimized our robot concept and further extended it.
The robot arm concept has been reworked and improved, a new display has been
implemented as well as voice-feedback functionality. We’ve started to bundle
our knowledge in a repository [22], where many aspects of our solution will
be publicly available. With this repository, we want to share our knowledge to
provide other researchers with a basic foundation for autonomous robots and task
completion. Last but not least, we’ve defended our title in the 2022 RoboCup
WorldCup in Thailand.

In the coming season we plan on improving our object detection by using
other network architectures such as segmentation, 6DoF and grasp detection
networks. We are also reworking our gripper concept to enable the use of force
feedback, which will improve our system. We also want to introduce performance
monitoring, allowing us to identify bottlenecks and plan future improvements.
Finally, we plan to extend the above-mentioned repository by adding more doc-
umentation as well as some theses from our students.

We are very much looking forward to the upcoming season, where we aim to
defend our title once again at RoboCup 2023 in Bordeaux.
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