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Abstract. Team description papers of magmaOffenburg are incremen-
tal in the sense that each year we address a different topic of our team
and the tools around our team. In this year’s team description paper we
address our approach to learn a model free kick with Nao toe using deep
reinforcement learning.

1 Introduction

Behavior learning plays a key role since the early days of robotics and in RoboCup
specifically. Good progress has been made by applying genetic learning algo-
rithms to the optimization of parameters of model based behaviors [6, 9] and
even model free behaviors [4]. However, especially the model free approaches
had the limitation that they are open loop: the behaviors learned do not take
the current observations and state of the agent into account. They are replayed as
learned and fail, if they are triggered in situations that differ from the situation
during learning.

Reinforcement Learning does not have this limitation, but had been limited to
small observation and action spaces. In recent years however, deep reinforcement
learning (DRL) algorithms like off-policy algorithms DDPG or DQN or on-policy
like A2C or PPO [7] have overcome these limitations and work in comparably
huge continuous observation and continuous action spaces.

While this has already been applied very successfully to learning to walk in
the simspark domain [2, 5], progress on kick behaviors and the usage of toed
robots remains an open issue. Also, in these works there is a gap between the
extremely successful behavior performance in training setup and the benefit from
it during real game play. This paper summarizes magmaOffenburg’s efforts to
overcome these limitations. For more details see [3].

2 Approach

Learning is performed using the OpenAI stable baselines implementation of PPO
named PPO21. Technically, an environment wrapper was created to send actions
via sockets to the java client controlling the robot and receive the observations

1 https://github.com/hill-a/stable-baselines



and rewards from the robot. The java client itself also uses sockets to send the
motor commands to the simspark server (written in C++) and receive the sensor
information.

2.1 Observation Space

The observation space has been inspired by work of [1]. Table 1 shows the 120
entries of the observation space. Entries in bold font are raw sensor values and
their derivatives (marked with * when applicable). The force sensors include
the 3D point of force as well as the force vector itself resulting together with
the derivatives in twelve values per sensor. In difference to [1], the usage of the
NAO robot with toes not only adds two additional joint angle sensors, but also
one force sensor per toe. Also, it turned out useful to add the torso’s x and
y components of the up vector, which are derived values, mainly from camera
localization. The relative angle of the ball used is somewhat redundant to the
relative ball position.

Inputs 118 and 119 are used to tell the network which direction and distance
the kick is desired to achieve. It was fixed to 0 and 20 for the straight kicking
experiments of section 3.2. In section 3.4 these ‘observations’ were successfully
used to learn kicks in a range of -30 to 30 degrees and for distances from 3 to 10
meters.

Table 1. Observation Space.

Index Count Observation

0 1 Counter
1-4 4 head joints*
5-20 16 arm joints*
21-48 28 hip, knee, ankle, toe joints*
49-54 6 3D relative ball position*
55-102 48 foot and toe force sensors*
103-108 6 accelerometer*
109-114 6 gyroscope*
115-116 2 torso up vector x,y
117 1 ball relative angle
118 1 desired kick direction (-90..90°, relative)
119 1 desired kick distance (0..20m)

2.2 Action Space

For the kicking behavior, only the leg joints are part of the 28 entries action
space (see Table 2). For each joint, the action space contains two values: the
destination angle to achieve, which is mapped to the possible values of each
joint and the maximum angular speed to be used. Variants that only use the



desired angle or only uses the angular speed produced worse results. Also, having
angle and speed for each motor makes it possible to use the genetically learned
kicks, that also use angle and speed, for pretraining the networks with expert
behaviors.

Table 2. Action Space.

Index Count Joint Orientation

0-5 6 left hip YawPitch, Roll, Pitch
6-7 2 left knee Pitch
8-11 4 left foot Roll, Pitch
12-13 2 left toe Pitch
14-27 14 right leg YawPitch, Roll, Pitch

2.3 Reward Function

Since kicking is a relatively short behavior (18 cycles), the reward function did
not contain continuous reward, but only end reward. The final reward for the
straight kicking experiments included the sum of achieved kick distance in x-
direction, the negative absolute deviation in y-direction and a negative penalty
for falling: reward = x− |y| − (1− s/88), where s is the number of stable cycles
after triggering the kick. To save time, an episode is stopped if the agent falls or
if after 88 cycles (approx. 1.5s) after triggering the kick we can be sure that the
agent is stable. In both cases, the achieved kick position is estimated as the 8s
future ball position.

The final reward for the multi-directional kicking experiments is a mixture
of the relative distance to the desired kick position and a penalty for falling:
reward = a1∗(d0−d)/d0−a2∗(1−s/88), where d0 is the desired kick distance and
d the distance of the (estimated) ball end position to the desired kick position and
a1, a2 are parameters balancing both penalties tuned to 100 and 25 respectively
in earlier learning runs.

2.4 Training Setup

The setup of the learning plays an important role with respect to creating ini-
tial conditions that are similar to the conditions during a game. This usually
increases learning time, but simplifies the transition from a learned to a suc-
cessfully used behavior. The goal is that the robots use the learned kick during
games when stepping slowly towards the ball or at the ball. Therefore, a train-
ing episode is designed as follows: the NAO robot is beamed randomly into a
rectangle near the ball (see section 3.3). After few initialization cycles, it steps
in place for one second without trying to achieve a desirable position! The kick
behavior with the right leg is then triggered when foot force sensors indicate
just touching the ground (first force indication after at least five cycles without



force). The robot then performs an 18 cycles deep kick behavior that is subject
of learning. 18 cycles was found to be sufficient in preliminary experiments to
kick the ball and stabilize after the kick. After the kick, the robot steps again in
place for 1.4s to see if the robot was able to avoid a fall. This means that only
18 of the roughly 150 simspark simulation cycles of an episode are learning steps
with respect to PPO.

2.5 Asynchronous Training

PPO2 allows to use multiple threads that collect data from parallel environments
to train one model. To do so, it has to receive an observation from each envi-
ronment per cycle. Since the actual kick is only performed in 18 of 150 cycles,
it often happens that several threads have to wait for a few other environments
to setup or wait for the result.

Table 3. Synchronous vs. Asynchronous.

Sync Async

Average Reward, 48h 6.834 8.967

Updates, 48h 166 1627

Episodes in 20min 5644 20782

In this work, we designed an asynchronous mode to provide observations.
The environment wrapper waits for k% of the environments to return an ob-
servation. For all other environments still busy performing preparation cycles, a
dummy observation with zeros is returned to PPO and the corresponding action
ignored. The learning process and quality do not decrease by this. This reduces
the syncing problem between all environments and makes sure that threads are
less likely to freeze and wait for some other thread to finish. The results are
shown in Table 3 with a used threshold of a minimum of 70% valid observations
per cycle. The table contains the average reward received after 48 hours of learn-
ing, the network updates performed in that time and completed episodes in 20
minutes. It can easily be seen that asynchronous training increases performance
and made the following research much more feasible in a given amount of time.

2.6 Mirroring Behaviors

Kicking is an unsymmetric behavior. To reduce learning times, the robots learn
a right leg kick that is then mirrored to its left leg. Mirroring a DRL-kick is
considerably more difficult than mirroring a genetically learned kick. The later
only requires to mirror the action space since they are typically open loop. For
a DRL-kick, also the observation space has to be mirrored.

For the action space, right side joints have to be replaced with left side joints.
Also, all roll joints and the arm yaw joints need to be mirrored. Mirroring means



to negate the desired joint angle. This can either be done after the mapping to
the co-domain of the network of [-1..1]. If done before, also the joint min and max
values have to be mirrored, at least for the roll joints that have a non-symmetric
co-domain (e.g. of -25 to 45 degrees).

For the observation space, all joints have to be mirrored as described above.
Additionally, the 3D relative ball position needs to be mirrored at the y-axis, the
foot force and its force origin have to be mirrored at the y-axis, the accelerometer
at the y-axis, the gyroscope at the y- and z-axis, the torso roll angle and the
ball relative angle also need to be mirrored. Finally, also the relative desired kick
direction is mirrored.

3 Results

In order to evaluate the described approach, extensive simulation runs of more
than 7000 server hours (Intel Xeon E5-2630 v4 @ 2.2 GHz, 10 Cores) were
conducted and are documented in this section. The first part concerns the DRL
approach PPO, while the second part deals with the results of the domain itself.

3.1 Hyperparameter Evaluation

PPO defines a couple of hyperparameters that are evaluated in detail in [3].

3.2 Straight Kick Distance and Precision

Figure 1 shows a comparison of the final position of 100 kicks from starting
coordinate (0,0). The PPO kick is slightly longer on average and has considerably
less spread in x and y direction. Also, the number of failed kicks is significantly
lower. In a series of 1000 kicks, the achieved distance of the PPO kick was only
in three cases less than 5m.

3.3 Kickable Area

The usage of a DRL policy network for controlling the agent’s behavior has a
fundamental advantage over behaviors learned with genetic learning: they are
closed-loop. The action is calculated based on the current observation while a
genetically learned behavior in joint space is simply replayed no matter what
the current situation is.

The DRL-Kick makes use of this, for example, with adjusted movements
depending on the relative position of the ball, which is part of the observation
space. In order to show this, the initial position of the player relative to the ball
during learning was randomly set within a rectangle of 10x13cm with respect
to the ball (at position (0,0)) (see Figure 2). The vertical axis represents the
position of the robot with respect to the ball in the frontal plane. A value of less
than 0.15m causes the robot to touch the ball already while stepping in place.



Fig. 1. Comparison of ball end positions of a genetically learned kick (left) and a PPO
learned kick (right).

Fig. 2. The kickable area of the PPO kick. The green rectangle shows where the robot
was beamed to during learning.



The horizontal axis represents the player position with respect to the sagittal
plane.

Each position in Figure 2 is the average reward of 50 kicks from the cor-
responding position relative to the ball. As can be seen, the robot learned a
successful kick in the whole area and slightly outside it. The huge difference in
size of the kickable areas of the PPO and the genetic kick is shown in Figure 3.
The genetic kick used as comparison uses a similar action space with joint angles
and maximum speeds for each joint, but limited to four keyframes with learnable
duration (for details see [4].

Fig. 3. Comparison of the kickable area.

3.4 Multi-Directional Kick

The extreme flexibility of DRL is shown in this experiment. In addition to beam-
ing the player into various positions relative to the ball, now the two steering
inputs of desired distance and direction are used to learn a multi-directional
kick.

In a first experiment, the network learned during straight kicking was used
as a starting point for the NAOToe. During learning, the desired direction was
randomly selected for each kick in a range from -45 to 45 degrees. The desired
kick distance was randomly selected between 3 and 10 meters.

Figure 4 shows the results of roughly one week of kick learning. Each rect-
angle is an average of 100 kicks with a corresponding fixed desired direction and
distance. As can be seen, the robot is able to learn to kick into a considerable



range of directions and distances despite the big variance of the relative ball
position. Two videos that demonstrate the kick are available here2 and here3.

Fig. 4. Reward with respect to desired direction and distance of NAOToe.

The same procedure was performed in a second experiment with a NAO
robot without toes. Figure 5 shows the difference of the toed robot to the robot
without toes for each direction and distance. As can be seen, the robot with toes
has a considerable advantage on longer kick distances while the robot without
toes is more precise on shorter kicks. For game playing, longer kicks are of higher
value though.

Fig. 5. Relative kick success of NAOToe compared to a NAO without toes.

As can be seen in Figure 6, the robot has learned to step on its support toe
to improve the kicking geometry and keep the stability of its stand. In 93 of 100

2 https://youtu.be/sHlkRaljtjY
3 https://youtu.be/F82hqicRYZQ



Fig. 6. Visualization of the kick phases of a straight kick.

kicks the NAOToe did not fall during or after the kick. This is only slightly less
stable than the NAO (94 out of 100), but more effective for longer kicks (see
Figure 5).

3.5 Performance in Games

The setup of the kick learning has been chosen in a way to simplify the intro-
duction of that behavior into real games. In fact, the PPO kick behavior can
replace the genetical kick by changing a single line of code, that adds the kick
to the list of available kicks instead of its predecessor. The performance of the
new straight kick was tested in a series of 200 games of two identical teams of
eleven robots with the only difference that one team was using the PPO straight
kick while the other used the old genetic kick instead. The PPO team scored
0.665 goals on average which is significantly more than the 0.385 goals for the
comparison team. Of the 200 games, the PPO team won 83 games, tied in 76
and lost 41.

In another series of 200 games, seven of the eleven players of one team had
toes and used the multi-directional kick (seven is the highest number of identical
robot types allowed). The other team was identical except that the toed robots
used the PPO straight kick learned. The multi-directional team scored 0.695
goals on average compared to 0.460 goals of the team without multi-directional
kick (signif.). Of the 200 games, the multi-directional team won 79 games, tied
in 72 and lost 49.
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