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Abstract. Wemodeled the RoboCupRescue Simulation as a distributed
constraint optimization problem and studied communication volume re-
duction in the Binary Max-Sum ADVP algorithm. In our experiments,
we reduced the communication volume by approximately 97% and con-
firmed the effectiveness of our approach. However, we cannot implement
our ideas on our agents owing to communication limitations. We there-
fore improved our agents using voice communication. This improvement
enables agents to propagate information about civilians to each other
and to communicate important information in a timely manner through
radio communications. As a result, our agents perform better than they
did in 2021.

1 Introduction

The task assignment problem is an important issue for the RoboCupRescue
Simulation (RRS). This problem can be expressed as a distributed constraint
optimization problem (DCOP) in a multi-agent system. Furthermore, the DCOP
can be solved using a DCOP algorithm.

We therefore modeled the task assignment problem of the RRS as a DCOP
and applied the Binary Max-Sum ADVP algorithm [4]. However, the DCOP
algorithm cannot be executed without an ADF extension environment [2] in the
RRS. Additionally, the bandwidth is set for each channel in communication on
the RRS, and it is thus not possible to have a large communication volume.
We therefore attempted to reduce the communication volume of Binary Max-
Sum ADVP. As a result of our efforts, we reduced the communication volume
of Binary Max-Sum ADVP by approximately 97%.

However, communication limitations in the RRS do not permit the appli-
cation of the above mentioned research. We therefore improved on last year’s
agent by propagating information about civilians through voice communication.
Through voice communication, we can avoid the bandwidth pressure of radio
communication, allowing the transmission of important messages with sufficient
bandwidth through radio communication. This implementation resulted in our
agent’s score improving from last year in six out of eight scenarios.



2 Hiroya Suzuki et al.

Chapter 2 explains the DCOP and Binary Max-Sum ADVP, presents the
method of reducing the communication volume of Binary Max-Sum ADVP, and
reports on an experiment comparing the communication volume before and after
the volume reduction. Chapter 3 describes the modules used in AIT-Rescue 2022.
Chapter 4 presents the strategy of each agent implemented in AIT-Rescue 2022.
Chapter 5 reports on an experiment conducted to evaluate the effectiveness of
the implemented strategy. Chapter 6 summarizes the TDP and discusses issues
to be addressed before RoboCup 2022.

2 Scientific topic

This chapter describes the modeling of the RRS task assignment problem as a
DCOP and the Binary Max-Sum ADVP algorithm. It also describes the reduc-
tion of the communication volume in this algorithm and evaluates the effect of
the reduction.

2.1 Distributed Constraint Optimization Problem

The distributed constraint optimization problem (DCOP) is the problem of de-
termining the combination of variable values that minimizes the cost of the
variables corresponding to the distributed agents, given the variables and the
constraints between the variables [1].

The DCOP is defined by the following five elements. We also explain the
modeling of the task assignment problem of the RRS on the DCOP, using the
example of a Fire Brigade.

– A “ ta1, . . . , amu

is a set of agents, where ai is an agent. In the RRS, it represents the set of
all Fire Brigades.

– X “ tx1, . . . , xpu

is a set of variables. However, p ě m, where p is the number of variables
and m is the number of agents. In the RRS, the variables represent which
tasks are assigned to which Fire Brigades. In other words, each variable is
in correspondence with one agent.

– D “ tD1, . . . , Dpu

is a set of discrete ranges for a finite set of variables X. Di is the range of
variable xi. Each element of the range is called a candidate value for the
variable and is represented by d. The combination of any candidate values is
represented by σ, and the combination of all candidate values is represented
by Σ. Σ is obtained by the following Eq. (1). Additionally, σ P Σ.

Σ “

p
ź

i“1

Di (1)

In the RRS, we consider a set of ranges that represent all the tasks that can
be assigned to each Fire Brigade. This paper regards a task as extinguishing
a fire in the previous rule and describes an example of Fire Brigades.
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– F “ tf1, . . . , flu
is a set of functions (called cost functions) that represent constraints between
variables. A cost function is defined as fi :

Ś

xjPXi Dj Ñ R. In this formula,

Xi is the set of variables whose constraint relation is denoted by fi.
In the RRS, we represent a set of cost functions f with a variable x P Xf ,
where the variable is a parameter for all Fire Brigades that can be assigned
to a task. Therefore, each cost function corresponds to one task.

– α : X Ñ A
is a mapping function of variables and agents. It represents which agent
corresponds to which variable.

The objective function Fgpσq for optimization is defined by Eq. (2). σfi is a
combination of only the candidate values corresponding to the cost function fi
from σ.

Fgpσq “

k
ÿ

i“1

fipσfiq (2)

The optimal combination σ˚ that minimizes the cost of Fgpσq is defined by
Eq. (3).

σ˚ “ argmin
σPΣ

Fgpσq (3)

In this paper, the selection of an arbitrary variable x P X for any candidate
value d P Dx in its range is represented by an ordered pair xx, dy.

2.2 Binary Max-Sum ADVP

Binary Max-Sum ADVP [4] is a derivative algorithm of Binary Max-Sum [3] with
a modified working graph and message content that improve the solution quality.
Binary Max-Sum ADVP converts the factor graph in which Binary Max-Sum
operates into a directed acyclic graph (DAG), as shown in Fig.1, thereby elimi-
nating closed paths and guaranteeing convergence of the solution. Additionally,
the incorporation of the evaluation value and the variable’s chosen value in the
message content guarantees that the solution at least does not worsen with an
increasing number of message communications. In this algorithm, sending and
receiving not only the evaluated value but also the variable value selected by the
variable node is called value propagation.

In both a factor graph and a directed acyclic graph, variables in the DCOP
definition are represented as variable nodes, and cost functions are represented as
function nodes. Edges connect variable nodes and function nodes and represent
assignable relationships. During the conversion of the graph, all variable nodes
are divided into root and leaf node sets. Which variable nodes belong to the
root node set and the leaf node set changes as the algorithm runs. In this paper,
the set of all nodes is V, the set of variable nodes is X, the set of root nodes is
Rx Ă X, and the set of leaf nodes is XzRx. The set of variable nodes has the
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same definition in the set of variables X in the definition of the DCOP, and it
is thus represented by the same symbol. The edges of the DAG are connected
from the variable nodes in the root node set to all function nodes, and from each
function node to all variable nodes in the leaf node set, as shown in Fig.1.
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Fig. 1: Example of transforming a factor graph to a directed acyclic graph

In Binary Max-Sum ADVP, all nodes work synchronously and repeatedly
share the result with neighboring nodes in the graph. As a result, all nodes
obtain solutions. This process is carried out in the following steps.

1. Receive messages from neighboring nodes.
2. Calculate the evaluation value based on the received information and gener-

ate a message with the evaluation value.
3. Send messages to neighboring nodes.

In the cycle of steps 1–3, the sending and receiving of a message is called
a communication cycle. By repeating the communication cycle, the evaluation
values calculated at each node are gradually transmitted to the entire graph.
When the evaluation values of all nodes have been sufficiently transmitted to
the entire graph, each variable node selects the candidate value with the highest
evaluation value. Whether a message has been transmitted sufficiently is thus
determined according to the status of change in the evaluation values of all nodes
or by repeating a specified number propagations.

Binary Max-Sum ADVP sends and receives messages according to the direc-
tion of the edge. In Fig.1, the variable node x1 sends messages to the function
nodes f1, f2, and the function nodes f1, f2 receive messages from the variable
node x1.

By repeating each of the three communication steps described above three
times, it is possible to propagate messages between the most two distant nodes
in the DAG. On the above basis, Binary Max-Sum ADVP first executes the
following process.

1. Form a DAG with 10% of all variable nodes in the root node set and the
other variable nodes in the leaf node set.
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2. Propagate messages through three communication cycles.
3. Set the current leaf node set as the root node set, reverse the edge orientation,

and execute the process in step 2.

The stage in which these three steps are executed is called the AD phase.
In step 2 of the AD phase, the variable node generates a message using Eq.

(4) and sends the message along the edge direction. Additionally, the function
node generates a message using Eq. (5) and sends the message along the edge
direction.

In step 2, the expression for obtaining the evaluation value to be sent from the
variable node to the function node can be written as Eq. (4). Here, Nx represents
the set of function nodes neighboring the variable node x, and f represents the
destination function node.

mxÑf “ ´ min
f 1PNxztfu

mf 1Ñx (4)

In step 2, the expression for obtaining the evaluation value to be sent from
the function node to the variable node is given in Eq. (5). Here, m̃fiÑxj

p1q is the
evaluation value when the variable node xj of the transmission partner selects
the value candidate di corresponding to fi, and m̃fiÑxj

p0q is the evaluation
value when di is not selected. gki is a constant that represents the superiority or
inferiority of a variable k to a value candidate di. pfipkq is a function that ranks
how superior xj is among the set of variable nodes Nfi neighboring the function
node fi. Additionally, p´1

fi
pmq is the inverse function of pfipmq.

mfiÑxj
“ m̃fiÑxj

p1q ´ m̃fiÑxj
p0q ` gji (5)

where

m̃fiÑxj
pb “ t1, 0uq “ min

n“0,...,|Nfi
|
pW b

fixj ,n ` Efix
p

´1
fi

pmq
,nq

W 1
fixj ,n “

#

wipn ` 1q if n ă pfi pjq

wi pnq otherwise

W 0
fixj ,n “

#

wipnq if n ă pfi pjq

wi pn ´ 1q otherwise

Efixk,n “

n
ÿ

m“1
m‰pfi

pjq

efix
p

´1
fi

pmq

efixk
“ mxkÑfi ` gki

pfi pkq “ 1` | txr | xr P Nfi ,

efixr
ă efixk

_ ppefixr
“ efixk

q ^ r ă kqu |

The value candidate σ˚
xi

that the variable node xi finally selects is calculated
using Eq. (6).
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σ˚
xi

“ argmin
djPDi

mfjÑxi (6)

After the AD phase is completed, the following processes are executed until
the termination conditions are satisfied. In this paper, the termination condition
is set at 300 communication cycles. This condition is a heuristic value. Marc et
al. set it at 100 communication cycles. [3]

1. Generate a DAG with only the top-level variable nodes in the order relation
ăX of the variable, as the root node set and the other variable nodes as the
leaf node set.

2. Let the variable node added to the root node set select a value using Eq. (6).
3. Propagate messages through three communication cycles.
4. Execute the following processes according to the number of variable nodes

included in the leaf node set.
For two or more Add the topmost variable node in the variable ordering

relation ăX to the root node set from the variable nodes included in the
leaf node set.

For one Make the current leaf node set the root node set, and reverse the
ordering relation of variables ăX and nodes ă and the direction of edges.

5. Repeat steps 2 to 4 until the termination condition is satisfied.

This stage following the AD phase is called the VP phase. In step 3 of the VP
phase, the variable node calculates the evaluation value using Eq.(4), as in the
AD phase, and sends the messages including the evaluation value and selected
value. The function node reflects the value received in the value propagation in
the partial assignment xσf of the cost function f and sends a message using Eq.
(7).

Here, ăX uses the ascending order of the index of the variable. The order
relation of the nodes, ă, is defined as follows. The direction of the edges on the
DAG is decided by the order relation. Here, v1 and v2 represent any nodes, and
X represents any variable node.

v1 ă v2 ðñ

$

’

&

’

%

v1 ăX v2 v1 P Rx, v2 P XzRx

v1 ăX X v1 P Rx, v2 P F, X P XzRx, tv1, Xu Ă Nv2

X ăX v2 X P Rx, v1 P F, v2 P XzRx, tX, v2u Ă Nv1

The above definitions have the following meaning.

– The variable nodes in the root node set are higher in the order relation than
the variable nodes included in the function node and leaf node sets.

– Function nodes are lower in the order relation than the variable nodes in-
cluded in the root node set. In addition, function nodes are higher in the
order relation than variable nodes included in the leaf node set.

– The variable nodes included in the leaf node set are lower in the order relation
than the variable and function nodes included in the root node set.
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An example of graph conversion in the VP phase is shown in Fig.2. In Fig. 2,
the upper-left value is the number of iterations of steps 2 to 4 in the VP phase.
In the fifth iteration, the graph is the same as that in the first iteration, and the
graph is converted continuously in the same way.
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Fig. 2: Example of graph conversion in the VP phase

Equation (7) is used to calculate the message to be sent by the function node
fi to the variable node xj belonging to the leaf node set in step 3 of the VP
phase.

mfiÑxj
“ m̃fiÑxj

p1q ´ m̃fiÑxj
p0q ` gji (7)
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where

m̃fiÑxj
pb “ t1, 0uq “ min

n“n
di
fi

,...,|Nfi
|´n

´di
fi

pW b
fixj ,n ` Efix

p
´1
fi

pmq
,nq

W 1
fixj ,n “

#

wipn ` 1q if n ă pfi pjq

wi pnq otherwise

W 0
fixj ,n “

#

wipnq if n ă pfi pjq

wi pn ´ 1q otherwise

Efixk,n “

n
ÿ

m“1
m‰pfi

pjq

efix
p

´1
fi

pmq

pfi pkq “ 1` | txr | xr P Nfi ,

pefixr ` ϵfipxrqq ă pefixk
` ϵfipxkqq

_ ppefixr “ efixk
q ^ r ă kqu |

efixk
“ mxkÑfi ` gki

ndi

fi
“ |txx, dy | d “ di, xx, dy P xσfi

´xj u|

n´di

fi
“ |txx, dy | d ‰ di, xx, dy P xσfi

´xj u|

ϵfipxkq “

$

’

&

’

%

´ϵ if txx, dy | px “ xkq ^ pd “ diq, xx, dy P xσfiu ‰ ∅
ϵ if txx, dy | px “ xkq ^ pd “ diq, xx, dy P xσfiu “ ∅
0 otherwise

Here, in the expression for xσfi
´xj , ndi

fi
is the number of variable nodes that

have selected the value candidate di corresponding to the cost function fi whereas
n´di

fi
is the number of variable nodes that have not selected di corresponding to

fi. Additionally, in pfipjq, ϵfipxjq is a function that changes the rank of the
variable node xk P Nfi according to xσfi . This function changes the rank of the
variable nodes in Eq. (7) so that the order is variable nodes that have selected
di in xσfi

´xj , variable nodes and destination variable nodes that are not included

in xσfi
´xj at that time, and variable nodes that have not selected di in xσfi

´xj .
Equation (7) determines the rank that can be obtained by pfipjq according to

Eq. (7), and limits the range of indices of variable nodes calculated by mfiÑxj
p1q

and mfiÑxj p0q from ndi

fi
to | Nfi | ´n´di

fi
, so that the values of variable nodes

that select di in xσfi
´xj are always added, and the values of variable nodes that

do not select di are never added. The values of variable nodes that have di
selected in xσfi

´xj are always added, and the values of variable nodes that have
not selected di are never added. This means that at each function node, it is
possible to obtain the best evaluation value and its partial assignment at the
destination variable nodes and the variable nodes not included in the partial
assignment, after limiting the solution space using the partial assignment of
that variable node.
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2.3 Reduction of the communication volume for Binary
Max-Sum ADVP

The RRS has communication limitations. In radio communication, each chan-
nel has its own bandwidth, which limits the volume of messages that rescue
agents can communicate. In voice communication, there is a limit to the range
of messages that agents can send, and only one message can be communicated
in one step. Binary Max-Sum ADVP described in Section 2.2 requires much
communication and it is thus important to reduce the communication volume.

In this paper, we propose the following method of message reduction.

Algorithm behavior and reduction using graph structures In step 3
of the VP phase described in Section 2.2, messages including new content are
propagated in the order of the root node set, function node set, and leaf node
set as shown in Fig. 3. The reason is that each node calculates the new message
to be sent on the basis of the messages immediately before the node received.
The contents of these sent messages is then reflected on each node after one
communication cycle because the nodes operate synchronously.

Each node calculates the evaluation value to send according to the evaluation
value received in the previous communication cycle. In other words, if a message
has no new information, no node needs to send the message. Thus, each node
stops sending messages below in each communication cycle.

First communication cycle Messages sent by variable nodes that have not
been added to the root node set and messages from function nodes

Second communication cycle Messages from variable nodes belonging to the
root node set

Third communication cycle Messages from all nodes

Reduction using algorithmic behavior In the communication cycle imme-
diately before a variable node is added to the root node set, only the highest
variable node in ăX among the variable nodes in the leaf node set needs to
receive a message from the function node. The variable nodes included in the
leaf node set do not send messages because they have no destination node. Such
nodes do not send and they thus do not need to calculate or receive an evaluation
value. However, in the case of a variable node that moves to the root node set
in the next communication cycle, the node needs to receive the evaluation value
and calculate the value.

Therefore, the function nodes stop sending messages to the variable nodes
belonging to the leaf node set, except for the highest variable node in ăX.

Reduction through message comparison For the same reason as in the
reduction using the algorithm behavior and graph structure, if the messages are
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Fig. 3: Messages containing new information for each communication cycle in
step 2 of the VP phase

the same as in the previous communication cycle, nodes do not need to send the
messages because such messages do not affect the calculation of the evaluation
value or the assignment. Therefore, each node compares the message it sent
in the previous communication cycle with the message it plans to send in the
current communication cycle, and stops sending if they are the same.

2.4 Experiment

This experiment compares the communication volume of Binary Max-Sum ADVP
before the reduction with that after the reduction through simulations with var-
ious conditions. In this experiment, we use the ADF extension environment for
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DCOP [2]. In other words, each agent can communicate multiple times during
one step.

We use the VC2 and SF2 map of RoboCup 2021 and prepare a total of
480 disaster scenarios for experiments. The average numbers of messages before
and after the communication volume reduction are compared in Table 1. The
experiment uses the initial step of each simulation, and the algorithms run 300
cycles during the step. In other words, we focus on the initial condition of the
disaster and the simulation state does not change with time.

Table 1: Comparison of the number of messages
Number of messages Minimum Average Maximum Standard deviation

Before reduction 15,000 15,000 15,000 0

After reduction 460 497 886 31

As shown in Table 1, the average number of messages after the communica-
tion volume reduction is 497, whereas the average number of messages before the
reduction is 15,000. Therefore, the method of reducing the volume of communica-
tion proposed in this TDP reduces the communication volume by approximately
97% on average. There is no change in the solution before and after the reduction
of the communication volume in any disaster scenario.

3 Modules

3.1 Refuge Selector

Since last year, the refuge capacity was introduced to the RRS. Having a capacity
means that the refuges admit only a limited number of victims to their premises.
This change affects how the Ambulance Teams decide where to carry victims.
The agents get the following information about the refuge capacity.

– bedCapacity: total number of beds available in a refuge
– occupiedBeds: number of occupied beds in a refuge
– waitingListSize: number of victims already waiting in a queue for treatment

in a refuge

We therefore developed Refuge Selector. Refuge Selector is a module that
decides to which refuge the Ambulance Teams transport victims. Refuge Selector
calculates for each refuge the utility of selecting this refuge. The utility for each
refuge is shown in Eq. (8). Refuge Selector decides the refuges where this utility
is maximized.

utilityV ariable “ pmaxDistance ´ distanceRiq `

ˆ

bedCapacityRi

refugeSize ˆ 2

˙

(8)

where maxDistance is the longest straight-line distance between an Ambu-
lance Team and any refuge, distanceRi is the straight line distance between an
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Ambulance Team and a refuge Ri, bedCapacityRi is a bed capacity of a refuge
Ri, and refugeSize is the number of refuges on the map. bedCapacityRi is di-
vided by refugeSize ˆ 2, which is currently an empirically determined value,
meaning that it is simply a coefficient.

It is necessary to consider a utility formula that takes into account occu-
piedbeds and waitingListSize. However, Ambulance Teams never have the latest
information, and the reliability of the information is low. Therefore, in this paper,
we do not use these two pieces of information.

3.2 Overcrowding Area (Clustering)

In some disaster scenarios, agents may initially deploy densely. In addition, in
the RRS, agents cannot move when blocked by blockades and cannot commence
rescue tasks quickly. Therefore, the Police Force must remove the blockades in
areas with high agent density as soon as possible.

We developed a clustering module called Overcrowding Area. Overcrowding
Area is a module that detects the area where the Police Force, Ambulance Teams,
and Fire Brigades are densely packed.

When the same type of agent exists in the perceptual range of each agent for
more than half of the total number of agents, Overcrowding Area holds EntityID
of the road or building where the agents are located.

4 Strategies

4.1 Ambulance Team

An Ambulance Team is responsible for transporting civilians who have been
rescued by a Fire Brigade to refuges. This implies that cooperation between an
Ambulance Team and Fire Brigades is essential.

Cooperation with other agents In the 2021 TDP [5], when some agents
found a civilian who was buried in a collapsed building, the Ambulance Team
used radio communications to communicate with the Fire Brigades about the
buried civilian and to request rescue. However, radio communication has a band-
width cap, and it is not easy to provide such communication stably. Therefore,
the Ambulance Team adopts a strategy whereby agents mainly use voice com-
munications within their communicable range. The strategy is that agents send
rescue requests and propagate information about civilians to other agents.

Using voice communications avoids bandwidth pressure on radio communi-
cations and communicates critical information with plenty of bandwidth. The
following critical case requires radio communications. If the rescue agents can-
not move, radio communications are effective because of the delay in rescuing
victims. Agents need to send requests to the Police Force if a road is blocked or
a Fire Brigade if a victim is buried in rubble.
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Search and transport The Ambulance Team adopts merged clustering as
described in the 2021 TDP [5]. Merged clustering assigns an area on a map to
a properly responsible agent. The area is called a cluster. The cluster assigned
to each agent can be extended by merging neighboring clusters. In the case that
the agent has no more tasks to complete in the assigned area, the agent can
search for new tasks in other areas.

The Refuge Selector described in Section 3.1 determines the transport desti-
nation.

4.2 Fire Brigade

A Fire Brigade is responsible for rescuing the buried civilians and readying
them for transportation by the Ambulance Team. Therefore, a Fire Brigade
must cooperate with the Ambulance Team.

Cooperation with other agents In the 2021 TDP [5], the Fire Brigade sent
information of the targeted civilian and a transportation request to the Am-
bulance Team via communication immediately after agents finished rescuing a
buried civilian. Thus, the Fire Brigade does not use radio communication but
voice communication to rescue civilians as described by the Ambulance Team.

The Fire Brigade adopts the same voice communication strategy as the Am-
bulance Team to ensure that there is sufficient bandwidth to communicate the
critical information.

Rescue operations prioritize the number of surviving agents and civil-
ians The Fire Brigade rescues rescue agents and civilians according to the pri-
orities in Table 2. Assigning higher priority to the rescue agents improves the
efficiency of rescuing civilians.

Table 2: Priority of conditions used by our Fire Brigade teams
Priority Condition

1 Agent in the cluster

2 Civilian in the cluster

3 Agent outside of the cluster

4 Civilian outside of the cluster

The Fire Brigade prioritizes a life-savable civilian as much as possible. In
other words, the Fire Brigade decides whether it rescues a found buried civilian
according to Eq. (9). timeToReach is the number of steps from the current
location to the nearest refuge.

ptimeToReach ` buriednessq ˚ damageq ă hp (9)
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4.3 Police Force

The Police Force is responsible for clearing debris from a blocked road and
allowing other agents to move along the calculated path. The rescue operation
will be delayed if a rescue agent cannot move owing to the blockage of roads.

Therefore, if rescue agents are initially concentrated at certain locations, the
Police Force uses the clustering module described in Section 3.2 to remove debris
from the dense areas with the highest priority. Table 3 gives the priority of the
Police Force in clearing debris. In the case of the same priority, the Police Force
firstly clears the debris at the closest linear distance from the current position.

Table 3: Priority of conditions used by our Police Force
priority target

1 Refuges in its assigned cluster

2 Roads and buildings in an area where many agents are initially deployed and concentrated

3 ‚Ambulance Teams and Fire Brigades stuck in rubble within perceptual range
‚Debris on a path which a rescue agent moves along within perceptual range

4 Requests for clearing a blockage from an Ambulance Team or a Fire Brigade

5 Buildings where a rescue agent is initially deployed, in its assigned cluster

6 Highways in its assigned cluster

7 Buildings in its assigned cluster

8 Roads in its assigned cluster

Cooperation with other agents The Police Force receives a request from
the Ambulance Team and the Fire Brigade to clear the blockage and works to
rescue agents stuck in the rubble. If rescue agents are within the range of voice
communication, they will send a request and the information of found civilians
via voice communication.

5 Preliminary Results

We conducted comparison experiments using our agent from last year to ex-
amine the effectiveness of AIT-Rescue 2022. The scenarios were taken from the
RoboCup 2021 final scenarios. The experimental results are given in Table 4.

The experimental results show that our improved agent scored higher than
our agent from last year in six out of eight scenarios. In addition, the scores
improved greatly for the berlin3 and Kobe3 scenarios. The higher scores were
due to the scenario conditions being suitable for our strategies and modules.
However, the map sizes of berlin3 and Kobe3 are different, so that we will clarify
the reason in the future.

The score dropped by approximately 0.1 for the paris3 scenario. The rescue
request was made via radio communication in AIT-Rescue2021 and via voice
communication in AIT-Rescue 2022. There was thus a delay in the communica-
tion of information and the agent’s rescue operation in AIT-Rescue2021.
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Table 4: AIT-Rescue 2021 and AIT-Rescue 2022 Experimental results

Scenario
Team

AIT-Rescue 2021 AIT-Rescue 2022

berlin3 12.760 22.063
eindhoven3 38.479 40.999
kobe3 19.499 27.721
montreal1 40.384 41.576
paris3 66.949 66.830
sakae2 53.446 54.972
sf2 17.748 18.463
sydney2 4.707 4.707

The above assumes that the modules and strategies that we have described
in this paper work effectively in the RRS.

6 Conclusions

We modeled part of the RRS task assignment problem as a DCOP and applied a
DCOP algorithm, Binary Max-Sum ADVP. In addition, we attempted to reduce
the communication volume of Binary Max-Sum ADVP for use in competitions.
As a result, the communication volume was reduced by approximately 97%.
However, this algorithm cannot yet be used in competition because it requires
an ADF extended environment [2].

We therefore implemented a method of propagating information about rescu-
ing civilians via voice communication. The voice communication strategy avoids
the bandwidth pressure of radio communication and transmits critical communi-
cation with plenty of bandwidth via radio communication. Our agent surpassed
its scores achieved last year in six out of eight scenarios through the introduction
of our method.

For RoboCup 2022, we will further improve Eq. (9), as shown in Section 4.2.
The damage done to the citizens is added to each step in the RRS. Additionally,
Eq. (9) does not consider the time it takes for the Ambulance Team to get to the
location of the civilians. These problems introduce difficulty in making accurate
predictions. We will therefore improve the equations used in predictions and
apply them to our agent.
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