
Triton RCSC 2021
Team Description Paper

Hongtao Zhang1, Zihao Zhou, Pedro Orso, Duy Pham, Hector Montenegro,
Francis Macapinlac, Haoen Luo, Jennifer Nguyen, Seph Shia, Anika

Bhattacharya, James Li, Eric Wang, Danny Vo, Minxuan Liu, Xuanyan Hong,
Joaquin Caso2

1 University of California, San Diego, Institute of Electrical and Electronics Engineers
hoz043@ucsd.edu

2 University of California, San Diego, Institute of Electrical and Electronics Engineers
jcaso@ucsd.edu

https://ieee-ucsd-robocupssl.github.io/TeamWebsite

Abstract. The purpose of this paper is to describe the processes and
methodologies used by our software, electrical, and mechanical teams in
the design and production of a RoboCup SSL prototype robot meant to
compete in the 2021 RoboCup Tournament.

Keywords: RoboCup · Small Size League

1 Introduction

Tritons RCSC is an IEEE-sponsored club of mostly undergrad students from the
University of California, San Diego. We are proud to provide opportunities to
any student motivated to dive into the field of robotics and emphasize diversity
and inclusion in our work. The club was founded in late 2019 with the goal of
bringing UC San Diego onto the RoboCup scene while simultaneously opening
doors for students to gain hands-on engineering experience through learning,
promoting, and developing in the field of robotics. At its core, Tritons RCSC is a
club that aims to be a fun, but educational experience.

We are the first club to actively work on RoboCup Soccer in UCSD, hence,
the 2019-2020 season was to be split spent researching in the first half with
production in the latter. However, once the Covid-19 threat took full effect, the
club’s efforts in hardware development were hindered by meeting restrictions,
the closing down of our workspace, and physical separation of team members.
Facing the rookie challenges of our first competition and Covid-19 related issues,
we decided to delay our tournament application to the next season in hopes that

https://ieee-ucsd-robocupssl.github.io/TeamWebsite

Team Tritons RCSC

Robot Component Details

Embedded Computer Broadcom BCM2711 Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz (Embedded in Raspberry Pi 4B)

Embedded Microcontroller STM32F427IIH6 Cortex-M4 (ARM) 32-bit C @ 180
MHz (Embedded in DJI RoboMaster Development
Board Type A [abbrev. as RM])

IMU System (9DOF) MPU6500 6DOF IMU (Embedded in RM), IST8310
3DOF Magnetometer (Embedded in RM)

On-Robot Camera 8 Megapixel Pi Camera

Proximity Sensor ST VL53L1X ToF (Not included in the current pro-
totype, but will appear in a future upgrade to detect
ball-holding status)

Communication WiFi between standard home router and our PC

Main Motors DJI M2006 Motor with built-in encoders, Max 500
rpm, Max 44W, 416rpm at 1 Nm, @24V

ESCs DJI C610 32-bit FOC ESC (interfaced with CAN
BUS), @24V, @Max 10A

Wheels GTF 50mm Omni Wheel

Dribbler Motor & ESC T-MOTOR MT2212-13 980KV Brushless Motor (cur-
rent prototype), XING-E 2207 1800KV Brushless
Motor (future upgrade), ICQUANZX ESC BLHeli S
6s 35A

Kicker Circuit LT3751 Capacitor Charger Controller IC, GA3459-
BL Flyback Transformer (turn ratio 1:10), IGBT
switch (FZT755TA PNP + FDS2582 NMOS), 2700
Capacitor, @12v operating voltage, boost to 130V in
272 ms

Servo WEISE DS3218 Servo @5V 20KG

Power Supply 22.2 V 6s LiPo, 1550 mAh, 100C

Table 1: Robot Specification Table

restrictions would lift off, dedicating the rest of the 2019-2020 season to research
and slight software development.

By the start of the 2020-2021 season we began focusing our efforts on produc-
tion as it became clear that restrictions would not lift off anytime soon. The club
made a big effort in efficient online collaboration, as well as setting up a small
home workspace. We have done our best to work together while maintaining
safe-distancing and following any Covid-19 related city or school restrictions.

Since we are still a young club, our aim is to compete in the B league in
order to obtain experience for future tournaments. In this way, we can provide
competition and a chance at besting other teams in the B league. Though our
prototype is not perfect, we aim to make several improvements in the time before

IEEE at UC San Diego student branch 2

Team Tritons RCSC

the competition. Once fully optimized, we will be able to produce a strong team
of 6 robots for the 2020-2021 RoboCup tournament.

2 Mechanical Design

Fig. 1: CAD-design of Our Current Prototype

2.1 Drive Train

The robot uses four omni-directional wheels oriented at 26.66 degrees for both
the front and rear wheels. This inclination in angles was made to provide more
room for the rotating kicker-dribbler mechanism of the robot (Figure 1). The
layers and mechanisms of our prototype (Figure 2) including the chassis were
printed out of PLA. Our competition robot will be made of aluminum as it is
sturdy without being heavy.

2.2 Kicker

The kicker was designed to rotate to improve the robot’s overall ball catching
and kicking abilities (Figure 3) [17]. With the frontal wheels spread wider apart,
there was more room for us to increase the length of the dribbler and implement
the rotating kicker mechanism on the robot. We expect this rotating kicker to
perform better than a stationary kicker in that it will be able to catch more balls
by changing the angle. We are using a pre-built servo (WEISE DS3218 Control
Angle) to rotate the entire kicker mechanism.

IEEE at UC San Diego student branch 3

Team Tritons RCSC

Fig. 2: Current Robot Prototype

2.3 Dribbler

The position of the dribbler bar was calculated to offer maximum positional
grip on the ball without covering more than 80 percent of the golf ball’s cross
sectional area. Geometric calculations were performed starting with the area of a
circular segment to find the height and allowable width of overlap between the
golf ball and the dribbler bar. We used conservative estimates for measurements
to give tolerance for factors such as the golf ball sinking slightly into the carpet
surface. Calculations for the width of overlap were derived from the formula for
the area of a segment of a circle, and the height was modeled in Solidworks.

R = 20.7 mm
As

A = 0.2 =
1
2 (θ−sin θ)r2

πr2 ⇒ θ = 2.11314rad
w = R cos

(
θ
2

)
= (20.7 mm) cos

(
2.11314rad

2

)
= 10.1815 mm

2.4 Future Improvements Mechanical

When designing our dribbler we drew our inspiration from [12]. Although we
considered different possible features, such as a mobile/rotating dribbler or passive
retention techniques, we ultimately settled on the dribbler bar for its simplicity
and flexibility of design. Although the current iteration of our robot only uses
the dribbler bar for ball retention, future iterations could use it to put a backspin
or topspin on the ball without major changes to the hardware.

IEEE at UC San Diego student branch 4

Team Tritons RCSC

Fig. 3: Rotational Kicker

When designing our rotational dribbler system, we wanted the dribbler to be
able to ‘catch’ and retain the ball regardless of the angle of entry and contact
position. Since our dribbler is now attached directly to the chassis of the robot,
we decided on a self-centering mechanism to help align the ball. To do this, we
added spiral embossed patterns to guide the ball to the center of the dribbler.
We also considered shaping the dribbler bar to be concave, but this brought up
concerns with the behavior of the ball at different entry angles.

Fig. 4: In-Progress CAD Design

There were several issues with the printed prototype. We will change the
material of our motor retainers in order to increase the robot’s sturdiness and
correct current imbalances in the drive train. The dribbler mechanism failed to
work mostly because of a lack of friction in the material it was printed with. We

IEEE at UC San Diego student branch 5

Team Tritons RCSC

have opted out of the rotational kicker idea for the current season, but will keep
it in mind for future improvements. We will also focus on making the chipper
more compact so that friction between the different parts is not an issue. Figure
4 is the new CAD design we are working on; the more compact chipper is in
development and will be added in the future.

We also want to redesign our solenoids for next year. The pre-built solenoids
we utilized to power the chipper and kicker were too slow and took up substantial
space. It has been difficult to come up with a design that overcomes these
difficulties. We are taking inspiration from KgpKubs 2020 TDP [3] on how they
designed two rectangular solenoids that are compact and fit in the space of a
single cylindrical solenoid. They note that they had a slow kicker due to a smaller
number of winding on the solenoid due to dimensional constraints. We are taking
that into consideration in our design; UBC Thunderbots [6] provide a method for
winding in their 2020 TDP and if needed, we will utilize it. We are also considering
RoboJackets [1] findings in their 2020 TDP on how the proportions of steel to
aluminum in the pusher affect the consistency of the solenoid’s performance (and
how a curved kicker is inconsistent).

3 Electronics

3.1 Kicker Board

We found that the flyback topology would work best for our capacitor charging
needs [12]. We designed the board with the LT3751 Capacitor Charger Controller
IC and the GA3459-BL Flyback Transformer with a turn ratio of 1:10. The board
is powered by a 12 Volt source from the DJI RoboMaster Board. The LT3751 IC
was chosen due to its charging time efficiencies, but also due to the safety and
simplification it provides for the circuit [12].

To release the charge into the kick or chip solenoids, we plan to use a AQZ105
Panasonic Solid-State Relay for each of the two loads to control if the capacitor
will discharge through the kick or chip solenoids. This relay is a capable of passing
large currents, which is needed because there would be an instantaneous high
discharge of power through it and into the solenoid. To turn it on, we power
an internal LED using ∼ 40µA, which sends a light signal into a photo sensor
inside the relay. When detecting light, the photosensor then turns on the actual
switch transistors and allows current to pass through it. This process consumes
less power to turn on the solid-state relay when compared to a electromechanical
relay. The main reason these transistors were chosen was because of their high
voltage capabilities.

IEEE at UC San Diego student branch 6

Team Tritons RCSC

3.2 Future Improvements Electronics

A major issue is the lack of proper equipment to physically test the circuitry due
to the limitations set by our university’s policy during the COVID-19 pandemic.
We understand the simulation is not enough and we should test the actual circuit
itself, but due to our lack of equipment, including for our own safety when dealing
with high voltages, we have been extremely limited in this. For the purposes of
recording the application video, we used a pre-built standard capacitor charging
power supply module tied to a manual switch in order to test the effectiveness of
the CAD design. The use of this module also provided a good way to relate the
applied voltage to the solenoid’s force response and ball velocity from kicking.

4 Embedded Systems

Fig. 5: Embedded Hardware

The purpose of the embedded systems sub-team is to fully integrate the
hardware and software components of the robot. Different commands are sent
to the robot’s actuators to perform specific tasks including chipping, dribbling
and kicking a ball. Each operation is predetermined by the algorithms’ use of
the sensor data. Our goal is to establish a robust network of communication
between the physical movers of the system and the sensors coupled with software
to exchange data efficiently. The team selected Universal Serial Bus (USB) as the

IEEE at UC San Diego student branch 7

Team Tritons RCSC

communication protocol because of its reliability and speed. FreeRTOS served
our multitasking needs with its priority assignments to threads [2]. FreeRTOS in
our application provides heap management, message queues, and multitasking
on a STM32 microcontroller, which is programmed with the STM32 Hardware
Abstraction Library (HAL). A Raspberry Pi 4 serves as the team’s main source
of computational power and will process the robot’s vision via a camera.

Fig. 6: System Diagram - Embedded Integration

4.1 Actuator Control System

The actuators of the robot are the hardware components that are responsible
for moving the machine. The goal of the team’s control system is therefore
to manipulate variables such as velocity, acceleration, and rotation to operate

IEEE at UC San Diego student branch 8

Team Tritons RCSC

effectively. We applied the body-to-wheel transformation described in [5] to
transform the desired translational and rotational velocity of the robot to the
speeds of each spinning wheel. We adopted the Proportional–Integral–Derivative
(PID) algorithm to control these wheel speeds.

The kicker and chipper of the robot use constants, kx and ky, to characterize
the horizontal kick and the vertical chip, respectively. The constants represent
the intensity of the kicks, relating voltage applied to kick velocity. In essence, the
intensities are modified with a change of the PWM duty cycle sent to the Boost
Converters. The dribbler works similarly, but instead of intensity parameters, it
simply receives an enable signal to turn it on or off.

4.2 Synthesis of Data Using Sensors

The Inertial Measurement Unit (IMU) is a key part of our sensor module. The 9
degree-of-freedom (DOF) IMU system embedded inside the RoboMaster board
integrates a gyroscope, accelerometer, and magnetometer. We planed to use the
AHRS (Attitude and Heading Reference System) Algorithm to fuse data collected
from the three sensors to give the measurement of the current heading angle and
acceleration state of our robot [9]. Though the vision data from ssl-vision can
also be used to infer the heading and acceleration, having an embedded IMU
system supplies data with little latency and more accuracy.

The wheel-to-body transformation described in [5] transforms the angular
displacement or velocity of each wheel measured by the corresponding motor
encoders to the translational and rotational displacement or velocity of the entire
robot. In addition, we plan to implement an EKF (Extended Kalman Filter)
algorithm to fuse the motion information inferred from the encoders with the
information inferred from the IMU system to give a more robust real-time motion
estimation.

4.3 USB Integration of Actuators and Sensors

We utilized USB communication between the Raspberry Pi 4 and the RoboMaster
board because of its high reliability on its differential signaling and fast speed
that addresses the performance bottleneck of our distributed computing model
involving multiple computing devices. The team was particularly interested in
the virtual COM port (VCP) application of the USB because of simplicity.

4.4 Future Goals

We would like to create a set of system specifications for the robot that translate
to requirements for PID control. Percent overshoot, settling time, rising time, and

IEEE at UC San Diego student branch 9

Team Tritons RCSC

maximum response to a unit disturbance all serve as effective design parameters
that will improve performance if considered carefully. The PID control system
needs better algorithms to deliver angular and translational velocities.

To more efficiently drive the EC45 motors, we are considering designing our
own circuit using DC-to-DC power converters. A properly designed motor drive
will allow for instantaneous changes in voltage, forward motoring, regenerative
breaking and better power flow.

The team seeks to improve the current wireless network provisioning because
of the delay that comes with Wi-Fi. We plan on researching the benefits of
radio communication over Wi-Fi to ultimately increase the speed of information
transfer.

AHRS integration has not been properly configured yet, hence the team is
steadfastly working on it. The EKF is also a necessity because of its strategic
estimation of position and velocity with robustness.

5 Software

TritonBot (CPP)

Firmware (C/CPP)

Raspberry Pi 4 (Raspian OS)

Robomaster Board (STM32 F427)

USB

Physical Setup Simulation Setup

TritonSoccerAI

(Java)

TritonBot

(C++)

Virtual Firmware

(C++) x 6

x 6

grSim
TritonSoccerAI

(Java)

TCP/IP

Vision
Protobuf

Vision
Protobuf

Command
Protobuf

Vision
Protobuf

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

TCP/IP

Fig. 7: Experiment and Development Setup

The experiment setup for our software development is illustrated in Figure
7. For Java development, EJML (Efficient Java Matrix Library) was used for
linear algebra computations; Protocol Buffers were used for data serialization;
and Standard Java Net Package and Java Concurrent Package were used for
network socket communications and multi-threaded programming. With C++
development, the Armadillo library was used for scientific computation [13];
Protocol Buffers were used for data serialization; the Boost Library was used for
socket programming, asynchronous communication, multi-threading, logging, and
time-sensitive programming [14]; and RapidJSON was used for parsing settings
and configurations [16].

IEEE at UC San Diego student branch 10

Team Tritons RCSC

5.1 Architecture

Inspired by the inter-process Publisher-Subscriber system in ROS (Robot Oper-
ating System), we implemented our own simplified Publisher-Subscriber system
for convenient inter-thread communications [15]. There are two sub-classes of our
Publisher-Subscriber system. The first subclass has the intermediate message
channel implemented with synchronized fields of generic type, which provides
non-blocking methods for publishing and subscribing. The message channels
of the second subclass is implemented with message queues, which provides
synchronized publishing and subscribing, as well as the additional feature of
data traffic control. The functional building blocks of our programs are called
modules. Each of the modules runs in its own thread, with an arbitrary number
of publishers and subscribers establishing communications with another module.

Legend

Game Objects

Ally Robots

AI Communication

AI Processing

Detection VisionGameControl Decision Tree Strategies Tactics Skills

Opponent
Robots Ball

Estimators

CommandUDP
Socket

VisionUDP
SocketTCP Socket

Composite
Actions

Primitive
Actions

TritonBot Communication

CommandUDP
Socket

VisionUDP
Socket TCP Socket

Inputs BidirectionalOutputs Processing

Fig. 8: TritonSoccerAI

TritonSoccerAI Software (Java) TritonSoccerAI (see Figure 8) is the AI
application that runs on the central field computer. An abstraction was made
where each logical task is encapsulated as a module. Some notable modules in
TritonSoccerAI are the vision module, the detection module, the AI module, and
the ally robot’s game objects. The vision module receives information about each
robot and the ball as a protobuf packet. This information is published to the
detection module, which processes the packet, calculating the velocities of various
objects and translating the reference coordinate system into a team-specific
perspective. The detection module publishes this information to each of the
ally robot modules facilitating the execution of robot skills. The AI module
receives information from the vision module and the detection module. This
information is used to determine an overall strategy, the specific tactic, and

IEEE at UC San Diego student branch 11

Team Tritons RCSC

then the AI skill. Each ally robot contains a pathfinding class that generates
obstacle-avoiding paths. Allies are directed to perform skills by the AI class.
Each ally module performs the specified skill by further decomposing the skill
into primitive movements, which are then sent as UDP protobuf commands to
TritonBot. The TCP socket is used for establishing the connections with the
robots, and occasionally receiving state information from the robots, such as the
state in which the robot is dribbling the ball.

Fig. 9: TritonBot

TritonBot Embedded Application Software (C++) TritonBot is a c++
program that runs on the Raspberry Pi 4 SBC (Single Board Computer) of
every robot. It can be seen as an intermediary between TritonSoccerAI and
the low-level embedded systems, as illustrated in Figure 9. The program relays
commands and data sent from TritonSoccerAI and performs the necessary format
conversions, affine transformations, control algorithms, automatic procedures,
and the main EKF estimation. In addition, we plan to include an on-robot
camera to be processed in the Raspberry Pi as a simultaneous ball detector
and visual odometry. The major purpose of this program is to support more
computationally heavy algorithms running on the robots while offloading the
computation overhead inside STM32.

IEEE at UC San Diego student branch 12

Team Tritons RCSC

(a) Test Case 3 (b) Performance Comparison

Fig. 10: Pathfinder Experiments

5.2 Algorithms

Path Finding Algorithm In this subsection, we explain the design of a
trajectory-based dynamic path finding algorithm. Our path finding framework is
mainly based on Jump Point Search (JPS) [7], which has been commonly used
in video game development since 2011. The algorithm is proven to be fast and
reliable, finding near-optimal trajectories of robot in a reasonable amount of
time.

Prerequisite for the Path-finder Design Ideally, the pathfinding algorithm should
be executed independently for each robot 100 times per second. It restricts the
computation time for each pathfinding to be within 10 ms. In the Robocup SSL
scenario most parts of the bounded space are free from obstacles. An efficient
pathfinding algorithm should make use of this prior knowledge.

Any-angle path planning We discretized the 2-D continuous field into grids with
blocked and unblocked nodes. The optimal form of the found path should be a
set of vertices such that we could use the first edge to tell a robot which direction
and how far it should approximately go. We start by implementing a Theta*
algorithm [11], which is an any-angle version of the A* Algorithm. In short, it
interleaves smoothing steps that check whether a vertex has line-of-sight to its
descendants with A* searching steps. The resulting paths are reliable, but the
algorithm is slow for distant points, as the number of visited points skyrockets.

Jump Point Search Jump point search (JPS) is an optimal algorithm for finding
a path when there are few obstacles [7]. It skips most neighbors when searching
straight or diagonally in free space. Checking extra neighbors is only invoked
(which is called “forced”) when obstacles are encountered. Such an advantage

IEEE at UC San Diego student branch 13

Team Tritons RCSC

makes it suitable for the task. Although it finds discrete grid paths, the paths
can be post-smoothed by checking line-of-sight in a fashion similar to Theta*.
We call this modified version JPS-PS (post-smoothing).

Endpoint-In-Obstacle Handling We set the dynamic obstacles(other robots)’
radius to be much larger than the actual robot radius to maintain a safe distance
to other robots. It means when a robot accidentally gets too close to another
robot, the beginning of the path may be in the obstacle. We handle this by
performing a BFS from the start node to the first unblocked node, such that the
robot is guaranteed to leave the obstacle robot in the safest direction.

Experiments We compare JPS-PS and Theta*’s performance using four different
test cases: finding a path across

1. the center circle without obstacles
2. half of the field with four obstacle robots
3. the full field with eight obstacle robots
4. the full field without obstacles

Figure 10(a) visualizes the discretized field, blocked nodes (in red), and JPS-
PS path (in yellow) for test case 3. The result is shown in Figure 10(b). When the
path is short, JPS-PS needs to perform some extra checking and is slightly more
time-consuming than Theta*. As the path distances and number of obstacles
increase, the time needed by Theta* increases a lot while JPS-PS still costs a
reasonable amount of time.

Passing Planning Algorithm Our passing planning algorithm is mainly
inspired by the pass-ahead algorithm used by the CMDragons team at the
RoboCup’13 competition. [4] The key components of our algorithm are an accu-
rate estimator of time taken for a robot or ball to arrive at a certain location
given its initial state, and three probability maps for continuously finding good
passing and assisting locations.

Robot and Ball Time Estimator Compared with the precursor [8], our time
estimator features more data-driven, non-parametric methods, such that it is
applicable to all kinds of robot structures, ball textures, ball sizes and does not
require many tuning efforts.

The ball model is essentially learning a functional relationship between the
initial (kicking) velocity, the time, and the distance ball traveled. We collect ball
model data by shooting the ball from the origin with initial velocity in the range
of [1.00, 4.00] m/s with an interval of 0.01, and recording the ball’s distance at
constant intervals until the ball’s speed is below a threshold.

IEEE at UC San Diego student branch 14

Team Tritons RCSC

(a) Ball Movement Estimation (b) Robot Acceleration Estimation

Fig. 11: Time Estimators

The recorded data reveals a strong noise in the initial velocity. To eliminate
the noise, we reassign the speed of each record based on the rank of its distance.
Figure 11(a) demonstrates that the pre-processed ball movement data can be
accurately captured by a fifth-degree polynomial. We drop all the terms containing
no time to enforce that when the time is 0, the distance is also 0. The maximum
distance the ball can travel with an initial velocity can be estimated by minimizing
the velocity function using gradient descent.

We simplify the robot movement to be in four stages: rotation, acceleration,
maximum speed stage, and deceleration. The maximum speed the robot can
travel in each direction can be accurately calculated using the robot’s speed at
0 and 90 degrees using a torque model. We assume constant acceleration and
deceleration, both proportional to some power of the maximum directional speed.
Figure 11(b) shows that such a model effectively estimates the acceleration time
at any angle with very few parameters. The rotation time taken for each angle is
modeled by a cubic function, and the total movement time is estimated as the
sum of time for all four stages.

The learned robot and ball time estimators are simple, fast and robust,
accelerating the probability map computation.

Passing State Machine We used a state machine similar to the Simple Temporal
Network described in [4] to perform a passing routine, see Figure 12. The routine
is initiated when the ball is under an ally robot’s control, and the passer and
receiver are locked (can’t perform other behaviors) until the routine is finished. It
is noteworthy that most of the time, the passer kicks the ball before the receiver
arrives at the receiving location, achieving a pass-ahead coordination.

IEEE at UC San Diego student branch 15

Team Tritons RCSC

Pending
Passer
Holds

Ball

Passer in
Position

Receiver in
Position

Failed

PassedReceive
Success

Passer/
Receiver
 no longer

holds
ball

Yes

Is Passer
Arrived?

No;
keep
going

Is Receiver
Arrived?

No;
passer
rotate

to pass
angle

Yes

Is Passer's
Direction
Correct?

Is Receiver ETA
< Ball ETA?

Yes;
Rotate

and Kick

Yes;
Kick

No;
passer
rotate

to pass
angle

No;
passer
rotate

to pass
angle

Ball stolen by foe

Recevier is intercepting

Receiver hold ball

Ball
held
by

Passer

An
Ally

Robot
Get
Ball

Quit

Receiver
becomes
passer

Fig. 12: Pass-ahead State Machine

Passing Probability Map We used a probability map similar to the one mentioned
in [4] to decide which robot is the optimal receiver, whether to start a passing
routine, and the location to pass to (which we referred to as p).

The probability is calculated as the sigmoid of the weighted sum of a list
of scores, see Figure 13 for some examples. Higher C scores imply a higher
probability of successfully passing to p and Higher G scores imply a higher
probability of scoring a goal from p.

Those scores include:

– C1: Estimated time for the receiver to arrive at p minus minimum estimated
time for any enemy to arrive at p

– C2: Minimum estimated time for any enemy to intercept between the ball
and p minus estimated time for the ball to travel to p.

– C3: Penalty for p where ball traversal time is too small
– C4: Penalty for p too far from the ball
– C5: Penalty for p near defense areas
– G1: Minimum estimated time for any enemy to intercept between p and the

goal minus estimated time for the ball to travel from p to the goal
– G2: Bonus for a larger open-angle from p to the goal

IEEE at UC San Diego student branch 16

Team Tritons RCSC

(a) C1 Score (b) G2 Score (c) G3 Score

Fig. 13: Example Pass Probability Map, Brighter imply Higher Scores

– G3: Bonus if p is between the receiver and the goal and does not require the
receiver to rotate more than a threshold

Gap Probability Map We introduced an additional probability map to calculate
optimal positioning for ally robots amid the gaps of the opponent’s defensive
formation. The purpose of this probability map is to supplement the passing
probability map described above with intelligent positioning suggestions for the
remaining robots not involved in passing and receiving. Additionally, the map is
used to determine the behavior of remaining robots during a get-ball tactic stage
when neither side holds the ball. The probability is calculated as the product of
a list of F scores; higher F scores represent higher values for interrupting the
enemy and assisting the passing. Again, we refer to the position to be evaluated
as p. Those scores include:

– F1: Penalty for p near defense areas, similar to C5
– F2: Penalty for being too close to opponent robots. Compute the distance
d1 between the nearest opponent robot to p, set F2 = min(d1/d1max, 1.0),
where d1max adjusts the size of the dark region near each opponent robot.

– F3: Bonus for hard-to-intercept region. Let line y be the line crossing p and
the ball, compute the distance d2 between the position of the closest opponent
robot to line y, and if that robot is within theta degree FOV of the direction
of line y, set F3 = min(d2/d2max, 1.0), similar to the previous rule.

– F4: Bonus for front region close to the ball. Compute the distance b between
the current evaluation point and the position of the ball, and the vertical
distance f from the current evaluation point to the top of the field over the
opponent side, F4 = min(b, f)/((b+ f)/2).

IEEE at UC San Diego student branch 17

Team Tritons RCSC

Fig. 14: Example Gap Probability Map (Total Score)

Swarm Robotics Upon having several optimal points calculated from the
probability maps, the next task would be delegating a swarming group of robots
to go to the optimal points. Our first approach was a naive traversal of every
optimal point in order and assigns it to its nearest robot. This approach resulted
in a sub-optimal total arrival time. To improve it, we changed the order of
traversing the optimal points based on their relative distance to a reference point.
The Optimal point closest to the reference point will be the first to assign the
nearest robot, which makes the algorithm conditionally optimal depending on
the choices of the reference point. Our default reference point is the center of
the field, but our most frequently used reference point is actually the position of
the ball, that is, the optimal points near the ball would be the first ones to get a
matching robot assignment. In the future, we would like to explore the dynamic
programming approach with a good global optimization measurement.

Moving Ball Interception We adopted the convenient model-free, geometry-
based, and parameter-tuning based method introduced in [10] to perform the
interception of a moving ball. In our implementation, this algorithm returns the
next position for the intercepting robot, instead of a velocity vector as described
in [10]. The reason for such implementation nuance is for taking advantage of our
path finding algorithm described above with the feature of obstacle avoidance.

5.3 Decision Tree

Our AI software runs a decision tree in the main thread to direct the robots
to execute a proper attack, defend, or get-ball tactic depending on situation
estimation during a running game. First, when no robot has the ball, the get-ball
tactic will select our nearest robot to approach and try to bring the ball to our
control. Second, when the ball is under the control of our robots, an attack tactic

IEEE at UC San Diego student branch 18

Team Tritons RCSC

is performed with the probability estimations running in background threads
determining information regarding when and where to pass, receive, or shoot the
ball, as well as where the rest of our robots should go. Our program would consider
the small period in which the ball leaves the passer on its way to the receiver
as the ball under our control to keep the decision tree staying at the attack
stage uninterrupted. Additionally, we have implemented a simple geometry-based
dodging skill for the passer to dodge away from any opponent robot while holding
the ball waiting for a chance to pass. Third, when the opponent acquires the ball,
a defense tactic will be executed.

5.4 Future Goals

Currently, our design relies heavily on the ssl-vision data provided by the field
central camera. The ssl-vision data are susceptible to wireless communication
latency and intrinsic noise. To deal with the latency, we plan to integrate a Pi
Camera as both a ball detector and visual odometry. Furthermore, we plan to
include an EKF algorithm mentioned in our system design to handle the noise.

The parameters for the probability maps have not yet been properly optimized,
which resulted in suboptimal attack tactic performance. In addition, the current
dodging skill is also over-simplified. With proper improvement with the passing
and dodging skills, the attack tactic would achieve more satisfactory performance.

The robot and ball time estimators are currently trained by data collected
from the simulator, which might not be ideally transferred for usage on the
data collected for the physical robots. Once we are granted access to a physical
lab during the pandemic later this year, we would start collecting data on the
physical robots to experiment our models.

So far, the integration of ssl-game-controller and relevant auto-referee software
is kept at a low priority among our development tasks. We will need to integrate
them by the competition to properly experiment a virtual ssl soccer game.

6 Acknowledgements

We would not have been able to make so much progress without the RoboCup
community for the extensive information put online in terms of EDTP, TDPs
and GitHub repositories. We would also like to thank TIGERS Mannheim, for
their extensive contributions to the RoboCup community and being advocates
of open source development. Finally, a big thanks to Nicolai Ommer for his
responsiveness and lending of the field camera.

We would also like to thank the UC San Diego IEEE Chapter for their support,
guidance, and funding.

IEEE at UC San Diego student branch 19

Team Tritons RCSC

A special thanks is due to Professor Amy Eguchi with helping us establish
contact with the RoboCup organization and helping the team grow its connections.

A special thanks is due to Professor Hanh-Phuc Le of the Electrical Engineer-
ing department at UC San Diego for his advice on power electronics and circuit
control.

References

1. Almagro, J., Gynai, H., Jones, T., Khadse, A., Lindbeck, C., Maisonneuve, M.,
Neiger, J., Osawa, R., Siqueira, A., Srinivasan, A., Stachowicz, K., Stuckey, W.,
Wehmeyer, C., Woodward, M., Yang, D.: Robojackets team description paper
(2020)

2. Barry, R., et al.: Freertos. Internet, Oct (2008)
3. Bhat, M., Reddy, S., Aggarwal, S., Kirtania, A., Gupta, A., Garg, C., Roy, A.,

Chilukuri, G., MuraliKarthik, M., Agrawal, A., Chakraborty, D., Jindal, S., Mall,
P., Aggarwal, H., Bhat, S., Kedia, K., Jodh, A., Chakraborty, A., Wadhwa, G.,
Agrawal, U., Ghosh, M., Mandol, S., Singh, S., Salam, T., Bhushan, M., Agarwal,
S., Sinha, S., Sharma, S., Jasoria, T., Roy, A., Panda, S., Deb, A., Mukhopadhyay,
J.: Kgpkubs team description paper (2020)

4. Biswas, J., Mendoza, J.P., Zhu, D., Choi, B., Klee, S., Veloso, M.: Opponent-driven
planning and execution for pass, attack, and defense in a multi-robot soccer team.
In: Proceedings of the 2014 international conference on Autonomous agents and
multi-agent systems. pp. 493–500 (2014)

5. Bos, L., Citgez, Y., Dorenbos, H., Eichler, A., et al.: Roboteam twente extended
team description paper 2020. RoboCup Wiki as Extended Team Description of
RoboTeam Twente Team (2020)

6. Dumitru, P., Ellis, G., Fink, J., Hers, B., Lew, J., MacDougall, M., Morcom, E.,
Sawiuk, H., Sousa, C., Dam, W., Whyte, G., Zhang, L., Zheng, S., Zhou, Y.: Ubc
thunderbots team description paper (2020)

7. Harabor, D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 25 (2011)

8. Kalmár-Nagy, T., D’Andrea, R., Ganguly, P.: Near-optimal dynamic trajectory
generation and control of an omnidirectional vehicle. Robotics and Autonomous
Systems 46(1), 47–64 (2004)

9. Mahony, R., Hamel, T., Pflimlin, J.M.: Nonlinear complementary filters on the
special orthogonal group. IEEE Transactions on automatic control 53(5), 1203–1218
(2008)

10. Makarov, P.A., Yirtici, T., Akkaya, N., Aytac, E., Say, G., Burge, G., Yilmaz, B.,
Abiyev, R.H.: A model-free algorithm of moving ball interception by holonomic
robot using geometric approach. In: Robot World Cup. pp. 166–175. Springer (2019)

11. Nash, A., Daniel, K., Koenig, S., Felner, A.: Thetaˆ*: Any-angle path planning on
grids. In: AAAI. vol. 7, pp. 1177–1183 (2007)

12. Ryll, A., Ommer, N., Geiger, M., Jauer, M., Theis, J.: Tigers mannheim (2019)
13. Sanderson, C., Curtin, R.: Armadillo: a template-based c++ library for linear

algebra. Journal of Open Source Software 1(2), 26 (2016)
14. Schäling, B.: The boost C++ libraries. Boris Schäling (2011)
15. Stanford Artificial Intelligence Laboratory et al.: Robotic operating system, https:

//www.ros.org

IEEE at UC San Diego student branch 20

https://www.ros.org
https://www.ros.org

Team Tritons RCSC

16. Yip, M.: Rapidjson: a fast json parser/generator for c++ withboth sax/dom style
api (Feb 2020), https://github.com/Tencent/rapidjson/

17. Yoshimoto, T., Horii, T., Mizutani, S., Iwauchi, Y., Yamada, Y., Baba, K., Zenji,
S.: Op-amp 2017 team discription paper. RoboCup Soccer Small Size League (2017)

IEEE at UC San Diego student branch 21

https://github.com/Tencent/rapidjson/

	Triton RCSC 2021 Team Description Paper

