
MIRG 2020 Team Description Paper

Aatish Rana Vaibhav Kohade Dibya Jyoti Mohapatra
Archana Balmik Anup Nandy

Machine Intelligence and Bio-Motion Research Laboratory
Department of Computer Science and Engineering

National Institute of Technology Rourkela.
http://nitrkl.ac.in,https://mibmnit.in

nitrssg@gmail.com

February 9, 2020

Abstract. The paper illustrates the work of MIRG for the RoboSoc-
cer 3D simulation ’20 including the research and the ideas. It describes
team approach towards positioning of agents, their role assignment and
decision making depending upon various tactical situations.

1 Introduction

MIRG, Machine Intelligence Robotics Group is a recently formed team under
the Machine Intelligence and Bio-Motion Research Laboratory of Computer Sci-
ence Department of NIT Rourkela, Odisha, India. It envisages making the soc-
cer robots play autonomously in the 2020 RoboCup 3D Simulation Soccer. The
project is mentored by Dr. Anup Nandy from the same department. Undergrad-
uate students from circuital departments are currently constituting the team
behind the project. This is MIRG’s first attempt at any 3D simulation challenge
worldwide.
In this paper, we describe the approach adopted by MIRG to develop an agent
that will participate in game-playing. The work is structured in a given way.
Section 2 describes the base architecture on which the agent is built. Section 3
illustrates the positioning of the 11 agents. Section 4 outlines the role assignment
module. Section 5 and section 6 describes our work on optimizing the walk and
developing new skills. Section 7 illustrates the our future plans.

2 Base code architecture

The agent is built on the base architecture provided by UTAustinVilla’s code
open-sourced on GitHub. Link : https://github.com/LARG/utaustinvilla3d.

1

http://nitrkl.ac.in,
https://mibmnit.in
https://github.com/LARG/utaustinvilla3d


2

The code provides a platform to develop and deploy our work on the same. The
modularity of the code assists in understanding the flow quite quickly. The code
consists of a basic walk engine, necessary skills, and behaviors to carry out basic
tasks. The double inverted pendulum model is used by walk engine. It also has an
environment class known as world model which basically stores the world objects
around a particular agent and particle filter for localization. Necessary parsing
code for the same is also provided. However, it does not include advanced skills
and tactics, including long kicks and goalie dives. The optimized parameters
for complex behaviors are missing. Also, the primary game-playing strategy,
including agent formations and role assignment, are scraped out.

3 Positioning Module

The positioning of the agents is the primary objective of the game play. The
tactics and the role assignments derive it’s working from the positioning. MIRG
uses Delaunay Triangulation to generate triangles on the field using the strategic
points at various parts of the area that decides the strategy of the play. Triangu-

Fig. 1. Delaunay Triangulation on strategic points

lation is the partitioning of any polygon into triangles. One such application of



3

triangulation is for interpolation. As triangulation is quite useful when applied
to polygons, it turns out that they show excellent results with point sets. One
such method for triangulation is Delaunay triangulation, which is based on the
property that no point should lie inside the circumcircle. A triangulation of a
finite set of points is called Delaunay triangulation if, inside the circumcircle of
a triangle, there is no other point among the set of points. This property is use-
ful in the removal of skinny triangles, which may arise in scan triangulation[1].
Now we perform Delaunay Triangulation on our field. We first need to find the
point set. The point set is the set of points that we have identified as strate-
gically important, and we have mapped those strategic points with the most
optimal position of every agent. Now the Delaunay triangulation is applied on
these strategic points, and the output is shown in the figure below.

Once the Delaunay triangles are recognized, we tend to find that triangle
that contains the ball. The identified triangle is now used to interpolate the
region inside the triangle and find the position of each agent according to the
ball position inside the triangle. For interpolation of the agent coordinates we
are using the following formula:

O(PointBall) =

3∑
j=1

O(Pointj) ∗A4−j ∗Wj)/(

3∑
j=1

A4−j ∗Wj) (1)

Fig. 2. Delaunay Triangulation with weighted vertices

P is the ball position. P1, P2, and P3 are the vertices of the enclosing triangle,
and their weights are W1, W2, and W3, respectively. A1 is Area of triangle Point-
Ball, Point1, Point2 A2 is Area of triangle PointBall, Point1, Point3 A3 is Area



4

of triangle PointBall, Point2, Point3 O(Point1), O(Point2), and O(Point3) are
the agent positions according to vertex Point1, Point2, and Point3, respectively.

Now W1, W2 and W3 are the weights of the strategic points and O(PointBall)
denotes the agent positions according to the ball position PointBall which is
calculated as

Weights have been assigned to a every strategic point and initially they are
assigned in such a way that it is proportional to the x- coordinate of the point.
Once the game begins the weight of these strategic points become dynamic such
that they depend on the ball’s position in a particular Delaunay triangle at any
instant of time.

Once the target positions for each agent have been identified, they are being
sent to the role assignment algorithm for the proper execution of the movement
of agents from the current position to the target position.

4 Role Assignment

When it comes to coordination between multiple agents, efficiently dividing the
tasks is a necessity. Distance plays a vital role in shaping the coordination in this
multi-robot system. The goal of the module is to find a role assignment function
f(x), between n-n elemental sets.

S1 refers to the 11 agents with start and target locations. S2 refers to the
same 11 agents with the same start locations but different target locations(or
roles). We have 11 roles in total. The Goalie is a bit static and does not change
its position because it’s the final defence mechanism. The OnBall is the primary
player, and the role is transferred to different bots according to the situation
on the field. Different role assignment functions map various robots to their tar-
get locations. The target locations are given by Delaunay Triangulation. Static
assignments randomly map the agents to randomly selected target locations in
a way that the roles remain constant once assigned. But the issue with this
method is it cannot avoid collisions. The implemented role assignment module
maps various agents to their roles in such a way that the longest distance from
a player to a target is minimized taking into consideration every mapping. It
avoids collisions happening underway while moving towards their assigned posi-
tions. It is dynamically consistent such that if f , the role assignment function,
gives a mapping m of players to their target locations at time T , then at time
t > T it outputs the same m. In that way, we ensure that the role assignment
gives minimal makespan and ensures that it remains unchanged as long as the
target positions are not reached. The role assignment module uses the Hungarian
algorithm to map the roles to various agents[3].



5

5 Decision Making

Once the ball is in possession of the agent, it has to decide whether to pass,dribble
or try to score a goal. This decision is made on the basis of various fuzzy variables
which change according to the position of the agent[5].

5.1 Passing

For passing, we define a source player who is in possession of the ball and a
target player to whom the ball has to be passed. The fuzzy variables considered
here are[6]

– Target’s distance from the source player.
– The locations of opponent agents near the target player.
– The angle of rotation for the source player to the target player.

These variables are evaluated and certain conditions are defined which evaluate
whether the pass is possible or not.

5.2 Goal Scoring

For scoring, we use three fuzzy variables

– The distance of the agent to the goal line.
– The opponent goalie’s position.
– The opponent’s position nearest to the ball.

For goal scoring, we check if the distance of the agent is in close proximity of the
goal post, then we check whether the goalie or any opponent is in any position
to stop the ball. If not, the agent attempts to score a goal.

5.3 Dribbling

The kick skills have been modified which allows an agent to dribble which can
be used to move the ball throughout the field.

5.4 Clearing The Ball

When the agent decides that it can neither pass,score nor dribble the ball,the
clear conditions are defined which cause it to kick the ball outside of the field.
This is a defence strategy to prevent enemy assaults.

The above flowchart explains the basic decision making process. Each agent
checks whether he has the ball or not. If he does, he tries to determine if he can
score, if not, he tries to pass the ball, if he can’t pass, he tries to dribble the ball
to the strategic regions where he can score.

If dribbling is not possible, he tries to kick the ball either in a particular
region where there are less players or out of the field as a defensive strategy.



6

Fig. 3. Flowchart describing the decision making process

6 Skills

6.1 Walking

Currently, the base code contains the omnidirectional walk engine for agents
which uses the double inverted pendulum model. But the walk speeds which
can be achieved by the available walk engine are quite slow and the stability
of the bot is an issue when speed of the walk is increased.The are several pa-
rameters which govern the walk and the stability of the agent can be optimised
using optimisation algorithms.Currently we are using CMA-ES algorithm for
improvisation of the basic and low level skills[4].

6.2 Kicking

The basic skill for kicking is based on implementing multiple frames as a periodic
state machine where every frame is the static posture of a fixed joint position[2].
To separate one frame from another, a delay called waiting time is executed
which ensures that the target joint angles for each frame are reached. These
frames are written in a special language called Skill description language and
which get parsed using a skill parser.

6.3 Goalie Actions

The goalie is the most static member in the field as it never changes its role
with another agent. Goalie aligns itself to the ball also follows the ball using the
distance between the ball and goalie as the parameter. We have created special
actions for goalie which prevents the opposition’s attack.



7

7 Future Work

Our positioning module is static but we would like to make it dynamic by chang-
ing the strategic points during the game play itself and hence Delaunay triangles
formed will no longer be static and hence will be the agent positions w.r.t the
ball. In role assignment we will be implementing prioritised role assignment with
man-to-man marking. This will help in maximising the possession of the ball to
ourselves. Our Decision making module uses fuzzy logic to decide whether a
player will pass the ball, dribble or shoot it. In the future, we plan to divide the
field into a set of regions for each playing agent. Each player will have a dom-
inant region, where he can reach at the least possible time, a passable region
which will list all possible locations where he can pass. The intersection of these
regions will help us execute the best possible passes which will help us optimize
our game pan. Walk engine parameters need to be optimised for more stability
and higher speeds.We tend to use reinforcement learning to do the same. Sim-
ilarly the kicking skill can be optimised for longer kicks and we would like to
use genetic algorithm to optimise the same. We also aim to use overlapped layer
reinforcement learning to learn high level skills from the low level skills.

Acknowledgements

The team also acknowledges the mentorship and guidance of our guide Dr.Anup
Nandy. We also thank KgpKubs team from IIT Kharagpur for supporting us in
our journey so far. We would also like to express our gratitude for Rahul Singh
for helping us in formulating the strategy.

References

[1] Hidehisa Akiyama and Itsuki Noda. “Multi-agent positioning mechanism
in the dynamic environment”. In: Robot Soccer World Cup. Springer. 2007,
pp. 377–384.

[2] Sven Behnke et al. RoboCup 2016: Robot World Cup XX. Vol. 9776. Springer,
2017.

[3] Patrick MacAlpine, Eric Price, and Peter Stone. “SCRAM: Scalable collision-
avoiding role assignment with minimal-makespan for formational position-
ing”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

[4] Patrick MacAlpine et al. “Design and optimization of an omnidirectional
humanoid walk: A winning approach at the RoboCup 2011 3D simulation
competition”. In: Twenty-Sixth AAAI Conference on Artificial Intelligence.
2012.

[5] Khashayar Niki Maleki et al. “A simple method for decision making in
robocup soccer simulation 3d environment”. In: arXiv preprint arXiv:1212.1570
(2012).



8

[6] Xu Yuan and Tan Yingzi. “Rational Passing Decision Based on Region for
the Robotic Soccer”. In: Robot Soccer World Cup. Springer. 2007, pp. 238–
245.


	Introduction
	Base code architecture
	Positioning Module
	Role Assignment
	Decision Making
	Passing
	Goal Scoring
	Dribbling
	Clearing The Ball

	Skills
	Walking
	Kicking
	Goalie Actions

	Future Work

