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Abstract. This paper reports the recent developments by the Kgpkubs
team. It describes the work on movement, formation strategies, heuristic
role assignment and techniques used to improve the game play.

1 Introduction

Kgpkubs is a team from the Indian Institute of Technology, Kharagpur, India.
It aims to make autonomous soccer playing robots. For this, the team is cur-
rently focusing on the 3D Simulation and Small Size League Event in Robocup.
Students from all departments and years are part of this including undergradu-
ates and post-graduates. The principal investigator for the project is Prof. A.K.
Deb and it is also mentored by Prof. Jayanta Mukhopadhyay , Prof. D.K. Prati-
har and Prof. Sudeshna Sarkar. The research group is supported by the Centre
for Excellence in Robotics, Indian Institue of Technology, Kharagpur. We have
previously participated in FIRA RoboWorld Cup in the years 2013-2015 in the
Mirosot League. In 2015, we secured Bronze position in the same. In 2016, 2017
and 2018 we participated in RoboCup (3D Simulation League). We also took
part in the Robocup Asia Pacific 2017 3D Simulation League.

This work is organized as follows. First, we give an overview of our base
architecture and strategy in Section 2. Section 3 describes about attacker and
goalkeeper tactics. Section 4 describes about the Positioning and 5 about the
Role Assignment Algorithm. Section 6 describes the approach we use for deciding
and executing the pass. Section 7 describes the approach and results we got after
training of our walk and kick. Section 8 describes the approach applied to learn
low-level skills like walking and dribbling. Section 9 describes our ongoing work.
Section 10 describes the various learning methods that we plan to use to optimize
low level skills.

2 Overview

Our base architecture is based on the team UT-AustinVilla code available on
Github https://github.com/LARG/utaustinvilla3d/. The code is divided into
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appropriate modules and provides us with the flexibility to modify and develop
easily.

Our strategy is based on using a mix of Delaunay Triangulation for proper
positioning of robots on the field and assigning tactics for carrying out specific
tasks. For Positioning, every robot calculates positions for all robots using Delau-
nay Triangulation and then uses the Hungarian Algorithm to find the position
assignment for each robot. This result is then communicated by each robots
taking turns. Upon receiving the results from the other 10 robots, the robot
performs a voting to obtain the position and roles of the other robots. Some im-
portant roles like attacker, defender, goalie are assigned based on some heuristic
methods overriding the Hungarian algorithm.

3 Tactics

Although we use Delaunay triangulation method to generate bot positions at
certain instances of the game, it is not always possible to assign a predefined
position to all agents. There is a need to obtain a separate tactic for those cases
which may not yield desirable results with a predefined tactic data set. These
cases are the most dynamic and important of all as they critically affect minor
requisites which may arise during the game.

The Attacker bot is arguably the most dynamic bot on the field. This role is
selected based upon certain heuristics like fallen status,distance from opponent
etc. The attacker can quickly dodge, dribble, kick(fast and slow) and drive ball
to goal. The attacker maintains ball possession by blocking the approaching
opponent. A certain radius around the ball is checked for possible defenders and
the dribble target is rotated by a suitable angle calculated by a function which
takes into account the opponent’s distance and velocity of approach. This results
into the opponent colliding with our bot leading to a foul or our player crossing
the opponent before it could reach the ball.

Goalkeeper is a static member of the game. It doesn’t switches it’s function-
ality with any other bot on the field. It occupy the near-to-goal area of the field
and is most sensitive to minor changes in ball position and velocity. The goal-
keeper dives when it knows the interpolated ball position is out of its reach in a
given time window. Hence, the goalkeeper decides when to dive as an incorrectly
timed or useless dive may actually do more bad than good. We have multiple
types of dives that goalkeeper can use, depending upon game play.

The multi-agent coordination shows marked improvements upon previous
year’s approach; players obstructing the path of the attacker diverge away. This
results in a decrease in collisions among our players and hence a more uninter-
rupted attacking game play is maintained.

4 Positioning Module

In soccer, player positioning and role allocation is a very important aspect of
the game. Meticulous player positioning affects the general temperament of the



game and proper collaboration of various tactics is vital for a team to function
efficiently.

Kgpkubs uses Voronoi-Cell Delaunay Triangulation method to generate and
co-ordinate player positions with respect to the varying circumstances. Voronoi
Cells are the result of a partitioning of the space into small regions based on
their distances from their focal point. A point in a plane, say x, is said to lie in
the Voronoi cell of a point y , if and only if the point x is more close to point y
than any other point in the space.

Delaunay triangulation is the Dual graph of Voronoi cell plane. It ensures
that no other focal point lies inside the circumcircle of the Delaunay triangle
formed. Also, due to this property it tends to avoid skinny triangles. As a result,
interpolating any point inside the triangle yields to a smooth-gradient continuous
equation in terms of the coordinates of the vertices of the triangle.

The algorithm used to generate player positions uses statistical data ( bot
and ball positions under different conditions of the game ) and generates a data
set of agent positions with respect to certain ball positions. 65 ball positions
in strategic locations were identified and triangulated using the incremental al-
gorithm to generate Delaunay triangles. Once the triangles are generated, the
Gouraud Shading algorithm yields the value of bot positions at any given point
in terms of the values of bot positions stored at the vertices of the triangle
enclosing it.

Initially, our bots are positioned symmetrically with respect to the symmet-
rical Voronoi points but it caused some bots to exit the field or cluster within
a specific area of the field causing collisions. The positions of the bots with re-
spect to a specific Voronoi Point can be further overridden during the game play
based on certain heuristic methods. The best possible positions of a bot during a
certain game state are considered to replace the currently allotted position. This
can be used in similar game states. This helps in the dynamic positioning of the
bots to an appreciable extent. There are further plans to implement a neural
network architecture to aid in the computation of the best possible positions for
the bot, using information from real-life soccer situations.

These computed formation points are fixed for every scenario. In order to
handle the dynamic situations within the game, heuristics are used to override
the formation points.

5 Role Assignment Module

The Hungarian algorithm is used which solves the role assignment problem in
polynomial time. Time complexity of this algorithm is O(n3). At every second,
as per the ball position, a set of target points are received from Voronoi Trian-
gulation. The Voronoi updates are not made after every few cycles to prevent
certain associated penalties:

• To save time as Voronoi updation is a computationally-expensive action.
• To prevent erratic bot behaviour arising due to sudden changes in ball posi-

tion.



Fig. 1. Delaunay Triangles formed

Fig. 2. Voronoi Points for a ball position

These set of target points are then matched to players on field by the Hungarian
algorithm. The cost function used for the Hungarian algorithm is the euclidean
distance between bot’s current position and target location. This type of role
matching has the following advantages :

(a) Collisions are mostly avoided.
(b) Longest distance is minimized
(c) It is dynamically consistent



There is a superficial layer which overrides the Hungarian mapping by eval-
uating certain Heuristics for specific roles to give better assignments. Role map-
ping is prioritized which assists in dynamic positioning of the robots.

6 Passing

Passing is one of the most essential elements for a multi-agent football play-
ing system. A fuzzy logic based passing has been implemented. For each team
member within a threshold radius, it takes into account :

• target player’s distance from source player
• distances of opponent players from source player and target player
• proximity to goal of source player and target player
• angle to rotate for source player to face target player

If all those binary conditions are satisfied, a favourable position to pass is
deemed, otherwise we continue as is. Few points to notice:

• while calculating distance, the values given to an opponent player ahead and
behind of our own player are not assigned to be the same.

• only those places to pass where the kick can be kicked accurately are considered
(at the time of writing, kgpkubs had not developed a kick which can cover
the entire field).

7 Kicking

A simulation environment, based on Rcssserver3d was developed in which kicking
was trained. 2 types of kicks were trained:

• Short Kick based on Inverse-Kinematics
• Long Range Kick

The skill file for kick has 22 joint angles as parameters, out of which 20 joint
angles were used, excluding the 2 head joints which had no contribution to the
kicking behaviour.

The Short Kick trained was accurate in both angle and direction specified.
The Long Kick had a good ground clearance but lacked accuracy and consistency.
While training the computation complexity was decreased by limiting the kick
action to 5 time-frames and each time frame had a different duration which was
also used as a hyperparameter for training. The trained parameters for Long kick
had high variance in the results and the Nao-bot takes too much time to align
itself in exact orientation to kick. This behaviour was undesirable since one can’t
afford to lose time during the match. Hence, parameters were manually tuned
further such as keeping the threshold distance between ball and bot as fixed
value and varying the angle, which not only reduced the reaction time of kick
but also increased the distance of kick by 1m , making the Long Kick range
standing at 10m, which is a significant improvement on our previous model.



8 CMA-ES

For optimizing low level skills, like walking, it may seem that reinforcement
learning is more suitable but on the contrary CMA-ES performs at par with
RL algorithms. We treat it as a black-box optimization algorithm, and have
not interfered with the algorithm itself. Different cost function were used for
optimizing different skills.The agent’s behavior was decomposed into a represen-
tative set of subtasks, and multiple walk engine parameter sets were learnt in
conjunction with each other.For example, asking the bot to walk on a straight
line and using the difference in x-coordinate optimizes walking straight as well
as improves its speed.The fitness of a given parameter set is proportional to the
success in the given task during a given time. Similarly you can optimize other
walk types (like lateral walking) and other skills like kicking and improving the
time taken to get up once the bot falls down.We have achieved excellent results
in terms of speed and stability, we improved our walking speed from 4.5 metres
in 10 seconds to 10.8 metres in 10 seconds. Here we provide a brief article about
the working of CMA-Evolutionary Strategy:

CMA-ES is a policy search algorithm that successively evaluates sets of can-
didates. Each candidate is evaluated with respect to a fitness measure. The next
set of candidates is generated by sampling multivariate normal distribution that
is biased toward directions of previously successful search steps. Recombination
amounts to selecting a new mean value for the distribution. Mutation amounts
to adding a random vector, a perturbation with zero mean. Adaptation of the
covariance matrix amounts to learning a second order model of the underlying
objective function. It is a parallel search algorithm so it can be run on a large
server to make the optimization feasible. Some parameters were carefully chosen
for optimization keeping others constant to reduce the search space.

9 Ongoing Work

Previously, work was done on the development of new code base in Python.
Basic functionality of code is to establish connection between server and agent.
The messages received from server are parsed using a parser and are processed
to extract information.

Utility Class consists of functions for sending and receiving commands from
the simulator which includes establishing connection to the server, initializing a
bot, passing proper joint torques to the joints present in the Nao-Bot. On top of
that Utility Class, a Humanoid Environment is created. It consists of initializa-
tion, step, make observation and reset functions which Reinforcement Learning
Algorithms requires for their functioning. Environment Class also stores Robot’s
Perceptor Values. Each Robot has its independent Environment Class in this ar-
chitecture.

Using this environment, we implemented Augmented Random Search algo-
rithm, to optimize the skill of getting up. The environment was integrated with
Gazebo which provides a stable and robust client-server connections. We further



aim to apply and get results from other similar algorithms and compare their
results.

With python code-base, we tried to use deep reinforcement learning algo-
rithms especially deep deterministic policy gradient, proximal policy optimiza-
tion to better simple actions like getting up, walking and kicking by training the
inverse kinematics parameters of the current walk engine.

Fig. 3. Nao environment based on OpenAI gym standards

10 Future Work

We tried to implement various evolutionary algorithms to optimize low level
skills. We also used the previously built python code base to achieve better
results on similar tasks. However, the simulation server was not adequate for
training skills using computationally expensive optimization algorithms.

Instead, we are working to build a reinforcement learning environment based
on OpenAI gym standards, using a suitable physics engine,and robot models. We
aim to train skills such as walking, kicking and standing up for a Nao-v40 bot.
We intend to transfer the above results to the robosoccer game play to improve
on-field performance. The aim is to replace the current inverse kinematic walk
engine with a better holistic approach based on further work.

Further work also involves developing multi-agent coordination and strate-
gies, using the above environment and other deep reinforcement learning algo-
rithms. Having a general framework for multi-agent coordination is an essential
part of a good soccer playing team of robots.



Furthermore we are aiming to use neural networks for automating the posi-
tioning module and being able to parallelize the algorithm for use on multi-core
systems and considerably increasing the learning speed.
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