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Abstract. ITAndroids is a robotics competition group associated to
the Autonomous Computational Systems Lab (LAB-SCA) at Aeronau-
tics Institute of Technology (ITA). ITAndroids is a strong team in Latin
America, specially in the simulation leagues. Our 3D Soccer Simulation
team started its activities in 2012, based on Magma Offenburg team in
Java, migrating in 2015 to a C++ team. This paper guides the reader
through the most important features of our code and work tools devel-
oped since the code migration.

Keywords: Robotic Optimization · Localization · Reinforcement Learn-
ing.

1 Introduction

ITAndroids is a robotics research group at Aeronautics Institute of Technology.
As required by a complete endeavor in robotics, the group is multidisciplinary
and contains about 40 students from different undergraduate engineering courses.

This paper describes our development efforts in the last years and points out
some improvements we want to implement in a near future. Sec. 2 describes our
Teams code structure. In Sec. 3, we discuss our localization method. In Sec. 4, we
show our motion control system. Sec. 5 explains our role assignment system for
positioning. Sec. 6 shows our strategy and points our robot navigation method.
Sec. 7 presents a framework that is able to mimic a reference motion and optimize
it towards a task. Finally, Sec. 8 concludes and shares our ideas for future work.

2 Code Structure

The code has been planned and divided in several modularized parts. ITAndroids
Soccer 3D works with a Base made from Magma Offenburg, even though we no
longer use their code. In this way, our code structure was heavily influenced by
those works.
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2.1 Communication

It is the layer that directly connects with the server, in order to receive and send
messages to it. This layer receives and sends a string as described in the Servers
website. It uses a socket to implement the communication.

2.2 Perception

The Perception layer is responsible for turning the communication layer string
into useful information. It parses the string, converting it into a tree and then
iterates over it to create new perceptor objects.

2.3 Modeling

Modeling basically models the world state. Not only that, it also models situ-
ations, e.g. in whether the agent has fallen. It uses the perceptors created in
Perception to update its models, getting the relative position of field landmarks
to find its positions, and acelerometer data to see if the agent has fallen.

Agent Model The Agent model is the part of the code that models information
related to the robot itself. It computes transformation matrices which are used to
transform vision observations from the camera coordinate system to a coordinate
system on the ground.

World Model The World Model is responsible for modeling world states such
as game state, time, and position, so that these information can be used by
Decision Making. It runs the Localization algorithm in order to estimate the
robot's position.

2.4 Decision Making

Decision Making is a layer that divides each agent role. It consists of Behavior
and Decision Maker.

Decision Maker The decision makers dictates the movements the agent should
take in order to successfully follow a determined strategy. One agent cannot
change its decision maker, but, that decision maker must be able to integrate
all the possible behaviors the agent has available, e.g. a Soccer agent receives a
SoccerDecisionMaker, and a goalie receives a GoalieDecisionMaker.

Behaviors Behavior is a set of what the agent can do in order to change its
own state. Behavior is a set of instructions that goes from high to low level
of abstraction, in order to make the agent follow its strategy. Each behavior
can use other behaviors for a more abstract level of problem solving. Potential
Field, Dribble Ball, Navigate To Position, Circulate Ball are Navigation Behavior
examples. Other examples of Behaviors are Focus on Ball, Beam Behavior, Kick
Behavior and Set Play.
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2.5 Control

Control is the layer that gets the requests from behavior and changes it into
more concrete things. For example, it takes a walk request created from one of
the behaviors, and converts it into joints positions.

2.6 Action

The Action layer is responsible to convert all the information the agent has
created to a string and send it to the server. It allows the server to interpret
agent’s actions and update its state based on these actions.

3 Localization

Using complex strategies in robot soccer requires that the agent knows its global
position in the soccer field. The problem of having a mobile robot that estimates
its pose with respect to a global coordinates system is termed Localization in
the robotics community. To solve this problem, the standard approach involves
using a Bayes filter, which iteratively incorporates sensors measurements and
the robots actions to construct a probabilistic estimate of the robot position.
Since implementing this technique directly is not feasible computationally, ap-
proximated techniques, such as the Kalman filter [11] or the particle filter [12],
are often employed. We decided to use Monte Carlo localization (MCL) [4],
which uses a particle filter to solve the Localization problem, because it is one
of the most efficient methods [10] and some teams in 3D Soccer Simulation have
successfully used this technique [2] [3].

Our MCL implementation was greatly inspired by the work explained in [5].
Each particle mantains a pose estimate represented by a 3-dimensional vector x
= [x, y, ψ]T, where x and y are global field coordinates and ψ is the horizontal
angle the torso of the robot is heading. We use a bootstrap particle filter with
resampling step [13].

In the sensing phase, we currently use landmarks (flags and goalposts) and
lines observations. Our landmark observation model consider gaussian noises
corrupting the horizontal distance and horizontal angle measurements with co-
variances σ2

d and σ2
ψ, respectively. Furthermore, we consider that landmarks ob-

servations are independent of each other. Therefore, a suitable rule for updating
the particles weights is:

w
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where w
(i)
k is the weight of the i-th particle in the k-th sampling time, dj is the

measured horizontal distance between the robot and the j-th landmark, d̂
(i)
j j

is the horizontal distance between the robot and the j-th landmark considering
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the current i-th particles position, ψj is the measured horizontal angle between

the j-th landmark and the robots heading, ψ̂
(i)
j is the expected horizontal angle

between the j-th landmark and the robot given the i-th particle position.
Our line observation model, described in [6], consists in filtering which of

the real field lines could get in the robots vision field and calculating the best
matching of each observed line with these field lines. For each observed line,
we extract landmarks from the points of the matching field line nearer to its
extremities and apply those in (1).

To determine adequate values for σd and σψ, we started with the measure-
ment covariances presented in Simsparks documentation and finely tuned these
values by hand. Distance error is also multiplied by a linear factor of the distance
itself. We do not execute a sensing phase when no vision update is present (note
that Simspark sends vision updates only every 3 cycles).

For motion update, we use odometry information given by our walking en-
gine, which gives the torso displacement vector∆dk = [∆xk, ∆yk, ∆ψk]

T
relative

to the local torso coordinates frame of the previous time step. At first, slipping
was making odometry and actual movement differ too much, especially at high
walking speeds. Simply scaling each channel proved effectively in solving this:

d′k =

∆x′k∆y′k
∆ψ′k

 =

α∆xkβ∆yk
γ∆ψk

 (2)

Thus, d′k was the value of displacement effectively used for motion update.
The parameters α, β and γ were manually tuned by comparing the evolution
of the robot's position and its estimate in Roboviz while the robot was walking
(relative to the robots coordinates frame) and manually tweaking α, β and γ.
Then, we update the tobot’s position of each particle i using:x
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where εx ∼ N
(
0, σ2

x

)
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(
0, σ2

y

)
and εψ ∼ N

(
0, σ2

ψ

)
incorporate process

noise. These covariances were also manually tweaked. We execute a motion phase
every cycle, then we naturally run more motion than sensing phase.

To reduce particle deprivation, we use a resampling step after sensing and
motion phases [13]. Given that resampling algorithms may be computationally
expensive, we use the O(N) algorithm shown in [10], where N is the number of
particles used.

To avoid the kidnapped robot problem, which happens in the 3D Soccer
Simulation domain when the server teleports the agent, we used the strategy
known as Adaptive-MCL [8] [10], which resets particles based on a heuristic
estimate of how bad localized the agent is. Instead of distributing the resetted
particles randomly in the soccer field [7], we use the current vision observations
to better reset the particles [8].
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Given two landmarks observations, we may estimate where the robot is as
shown in Figure 1a. Note that we end with two hypotheses, which may be chosen
at random. In our case, one of them will usually fall outside of the soccer field,
thus may be discarded. If more than two landmarks are seen in the current cycle,
two landmarks are chosen at random for each particle which is being resetted.
In case only one landmark is seen, but two lines as well (when the robot sees
only a corner), we estimate it with the distance from the lines to the robot, as
in Figure 1b. Moreover, we add gaussian noises to the landmarks' observations
before applying this resetting process to better spread the resetted particles.

(a) (a) Two landmarks (b) (b) One landmark and two lines

Fig. 1: Determining the agent’s localization using one or two landmarks obser-
vation.

Finally, the agent's position estimate is determined by a weighted average
of the particles positions. For future work, we expect to determine the parame-
ters using experiments or optimization techniques instead of relying on manual
tweaking.

4 Motion Control

For walking, we use the ZMP-based omnidirectional walking engine described
in [9]. In general terms, it follows the flux presented in Fig. 2. The input to the
algorithm is the desired velocity v = [vx, vy, vψ]T with respect to the robot's
local coordinate system. At the beginning of a new step, poses for the torso and
the swing foot are selected for achieving the expected displacement at the end
of the step. So, a trajectory for the center of mass (CoM) to follow a reference
Zero Moment Point (ZMP) trajectory is computed. The trajectory of the swing
foot is obtained by interpolating between the initial and final poses of this foot.

Finally, joints angles are calculated through Inverse Kinematics (IK) consid-
ering the poses of the support and swing feet. Note that the module Next Torso
and Swing Poses Selector is called once for step, while the others are executed
at the update rate of the joints.

Our step planner selects torso and feet poses to make the robot follows an
omnidirectional model while respecting self-collision and leg reachability con-
straints. To reason about the robot dynamics, we approximate it using the 3D
Linear Inverted Pendulum Model (3D-LIPM) [1]:

xZMP = xCoM −
zCoM
g

ẍCoM (4)
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Fig. 2: Walking Engine overview.

where xZMP = [xZMP , yZMP ]T is the ZMP position, xCoM = [xCoM , yCoM ]T is
the CoM position, zCoM is the CoM height, and g is the acceleration of gravity.
The ZMP is kept at the center of the support foot during single support and
moves from the current support foot to the next one during double support. We
also use the torso's angular velocities measured by the gyrometer to stabilize the
walk.

5 Dynamic Role Assignment

5.1 Position Model

The Delaunay Triangulation algorithm calculate our player's positions and gen-
erate a formation set of agents for every single position of the ball [20]. These
positions serve as reference points for an agent to where they should be if there
is not any enemy in a dangerous position just according to the ball's position
in that moment. The Dynamic Role Assignment [21] idea is that the agents can
communicate with themselves, decide the best lineup in that moment and assign
the Delaunay Triangulation positions to the team, one for each agent. And do it
all dynamically, sending and receiving messages in every communication cycle.

The lineup consists on eleven positions and each agent, using the data re-
ceived in the World Model, is able to determine which agent should be assigned
to each Delaunay Triangulation position based on the agents position. Each po-
sition is assigned to a number 1 - 11, just as the agents uniform number. So, the
agent generates an array and assigns the number of the Delaunay Triangulation
position to each player in its team.

5.2 Communication between Agents

The objective is to send a vector containing each position assigned to each other
agent in the team. Each agent can send and receive messages from the server in
every cycle of 20 ms, with the messages size limited to 20 bytes (160 bits). The
problem is that every integer occupies 4 bytes, and the team has 11 players. So,
the vector would have occupy 11*4 = 44 bytes of memory, a lot more than the
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limit. The solution used was to use the base64 ascii encoder [22], a compression
message encoder that creates a bijection between the vector and other structure
which occupies less memory. Then, the agents would receive the encoded mes-
sage and, using the same bijection, be able to decode and receive the message
vector. The method proved itself to be very efficient, reducing the size of the
role assignment vector form the original 44 bytes to only around 110 - 120 bits.

5.3 Voting System

When the agents have all sent their respective role assignment vectors to each
other (they may differ between agent to since their perception is different), they
acknowledge the position which was assigned more times to each respective
agent. Then, the team's role assignment vector would be filled based on the
assignments.

5.4 Marking System

The marking system is a sequential process used to mark opponent agents who
are offensively dangerous during the match. The system performs three steps: it
decides the players that will be marked, defines roles to mark these players and,
finally, uses the Role Assignment system to designate agents for those defined
roles. To decide which opponents are to be scored, a heuristic method is used
based on the following conditions about the opponent. If it is:

– Close enough to take a shot on goal.
– Not the closest opponent to the ball.
– Not too close to the ball.
– Not too far behind the ball.

After that, a set of formation roles must be selected to mark the chosen
opponents. For this, marking roles positions are calculated as the position 1.5
meters from a marked opponent along the line which connects that opponent
to the center of our goal. The formation positions to be replaced are the closest
to each marking position, and their selection is done by using the Hungarian
algorithm, which calculates the minimum sum of distances between the previous
forming positions and the marking positions.

6 Strategy and Decision Making

6.1 Set Plays

As in a soccer game, during a simulated game there are situations where the ball
is stopped. When this happens, the team with the ball has a certain amount of
time to make a move, while the other team cannot approach more than a certain
distance from the ball. For some of these situations we have formulated different
set plays, namely: Own Goal Kick, Opponent Goal Kick and Own Corner Kick.



8 ITAndroids Soccer 3D Team Descripition Paper 2019

6.2 Robot Navigation and Potential Field

Planning consists of finding a sequence of actions that transforms some initial
state into some desired goal state. In our case, we use the Potential Field as
our robot navigation method. This technique applies to each field point's point
a numerical value that corresponds to the potential caused by external agents.
Therefore, is possible to know which points should be avoided and which point is
the goal. There are several advantages of using Potential Fields to robot naviga-
tion [14]. First, it is easy to implement and visualize, and the resulting behavior
of the robot is therefore easy to predict.

7 Reinforcement Learning Optimization Server

Motivated on the recent advances on Deep Reinforcement Learning, we created
a framework that is able to mimic a reference motion and optimize it towards a
task. We represented the motion as a neural network, with thousands of param-
eters, which followed a 2-step training procedure where:

– The first step is a Supervised Learning Training, where we transfer the knowl-
edge from a keyframe representation to a neural network; and

– The second step is a Reinforcement Learning Training, where we optimize
the motion from the neural network using rewards related to a specific per-
formance task.

We developed better policies than the initial ones for kick motion. Using
this framework, we also showed that pure Reinforcement Learning techniques
by themselves will lead to suboptimal policies (due to premature convergence)
and will not achieve high performance motions [18].

7.1 Supervised Learning Step

In the first phase, we cloned the kick motion using supervised learning [15].
We acquired the dataset in two different ways. In the first one, we commanded

an agent of our team to execute specific motions and sampled the reference joint
positions computed by our code. In this case, we sampled the kick and get up
keyframe motions [16].

The second approach involved changing the Soccer 3D server source code to
provide current joint positions of a given robot, in a similar way as described
in [16]. This allowed us to acquire motion datasets from other teams, without
any knowledge of how these movements are implemented.

We used a deep neural network with 2 hidden, fully connected layers of 75
and 50 neurons, respectively. The output layer has 23 regression neurons, which
represent the 22 joint angles and a neuron which output indicates if the motion
has ended or not, as shown in Figure 3.

The final mean absolute error was 0.018 radians and the motion was visually
indistinguishable from the original one, as can be seen in Figure 4. We performed
a test scenario to evaluate the kick motion and compare with the initial policy.
Results are summarized in Table 1.



ITAndroids Soccer3D Team Description Paper 2019 9

Time Instant

75 Neurons

50 Neurons

22 Joints

Has Ended?

Fig. 3: The architecture of a neural network designed to learn motions.

Fig. 4: The kick motion. The first row of figures shows the original kick mo-
tion. The second row shows the learned kick motion. Both motions are visually
indistinguishable.

Table 1: The Kick Comparison

Kick Statistics
Type Accuracy (%) Distance (m)

Mean Std

Original Kick 64.5 8.92 3.82

Neural Kick 52.6 7.16 4.06
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7.2 Policy Improvement via Proximal Policy Optimization

We optimize the neural network from the Supervised Learning step using the
Proximal Policy Optimization algorithm.

Fig. 5: Reinforcement Learning Server Architecture [17].

Figure 5 shows the architecture used to integrate the learning algorithm,
agent and simulation environment. The simulation server exposes a state to the
soccer agent, which model this information and passes to the learning algorithm
that chooses an action accordingly and returns to the agent. Then, it applies
this action in the environment, modifying its state, completing the cycle.

Table 2: Kick Comparison - Effective Evaluation

Kick Statistics
Type Distance X(m) Distance Z (m)

Mean Std Mean Std

Original Kick 9.05 3.44 0.21 0.49

Learned Kick 4.82 4.46 0.12 0.21

HLM+RNR Kick 7.07 3.55 0.36 0.57

HLM+RNR+RET Kick 8.26 3.09 0.48 0.49

We applied such server in a distributed training setting, using Intel AI De-
vCloud [19] hardware. We tested the resultant policy and compared with the
original and imitated, culminating in the results of Table 2.

As a final experiment, we applied this model to a different kind of robot, the
Nao with Toe. When using the original keyframe motion, the Nao with Toe was
not able to even kick the ball – very often it kicks the ground because of its large
foot. We then applied the framework proposed in this work, which resulted in
the values presented in Table 3.
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Table 3: Kick Evaluation - Nao with Toe

Kick Statistics
Type Accuracy (%) Distance X(m) Distance Z (m)

Mean Std Mean Std

Nao with Toe Kick 95.0 9.47 3.43 0.66 0.63

8 Conclusion and Future Work

This paper showed the latest developments of ITAndroids Soccer 3D. During
Robocup 2018, it was clear that our positioning in the field, In addition to the
robot navigation to a desired position were performing below expectations. Now
aware of this, we will focus on developing positioning strategies to improve this
performance, as well as tools for parameter optimization and machine learning
use.
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