ITAndroids 2D Soccer Simulation
Team Description 2019

Marcos R. O. A. Maximo, Felipe V. Coimbra, Henrique F. Feitosa, Raphael de
V. Nascimento, and Rubens M. G. Aguiar

Aeronautics Institute of Technology,
Sao José dos Campos, Sdo Paulo, Brazil
mmaximo@ita.br, {felipecoimbra97,hentt30, rapharvn, rubens.miguek}@gmail.com
itandroids-soccer2d@googlegroups.com
http://www.itandroids.com.br/

Abstract. ITAndroids 2D Soccer Simulation team is composed by un-
dergraduate students of Aeronautics Institute of Technology. The team
is currently one of the strongest teams in Brazil, having won 1st place 4
times consecutively from 2012 to 2015, and is the current Vice Champion
in 2018 Latin American Competition. Moreover, the team has qualified
for the last five editions of RoboCup, having participated of four. This
paper describes some of our advances in 2018 and our plans for 2019.

1 Introduction

ITAndroids is a competitive robotics team from Aeronautics Institute of Tech-
nology reestablished in 2011. The group participates in the following leagues:
RoboCup 2D Soccer Simulation (Soccer 2D), RoboCup 3D Soccer Simulation,
RoboCup Humanoid Kid-Size, [IEEE Humanoid Robot Racing, IEEE Very Small
Size and RoboCup Small Size league.

Our Soccer 2D’s team, ITAndroids2D, has continuously participated in Latin
American Robotics Competition (LARC) and Brazilian Robotics Competition
(CBR) since 2011. Moreover, ITAndroids 2D competed in RoboCup in 2012,
2013, 2015, 2016, 2017 and 2018. The team also qualified for RoboCup 2014, but
unfortunately it was not able to attend to the competition. Our results in these
competitions are represented in figures 1 and 2.

Lack of continuation and documentation of the project and the spreading of
the team towards other field made ITAndroids2D slow down its improvements.
This can be seen from the leagues results from 2015 to 2017. However, [TAn-
droids 2D recovered in 2017, after a complete restructuring of the project [3].
As a result, we won 9th place at RoboCup2018, our best absolute place in the
competition.

In this paper, we describe our advancements during 2018: a great use case of
our Possession Automaton [3]| (Section 2) and the restructuring of our decision
making by use of Behavior Trees (Section 3). In the Section 4 we describe what
is the RoboCup Soccer Simulation Server, how is its functioning and how to use
it.

http://www.itandroids.com.br/

2 ITAndroids 2D Soccer Simulation Team Description 2019

Results

16
2012 2013 2014 2015 2016 2017 2018

Years

Fig. 1. Results of ITAndroids2D in past RoboCup competitions.

Results

4
2012 2013 2014 2015 2016 2017 2018
Years

Fig. 2. Results of ITAndroids2D in past LARC competitions.

2 Use Case of the Uncertain Possession Automaton:
Backpass Extinction

Using the uncertain possession automaton [3], one can easily find out which team
retains possession of the ball, which is not a trivial task, considering the noises
and incomplete information provided by the server. Several new strategies can
be elaborated for the team if the players have accurate information about the
possession of the ball, here it is described the use of the possession automaton
to avoid backpasses.

To solve this problem, a new uncertainty coefficient [3] that measures the
reliability of the information of the goalkeeper was created. It defines how much
information should be considered for the analysis done by the goalkeeper to
determine the team that keeps possession of the ball. Information containing
little noise is preferable to information with higher noise.

The reason for creating this new coefficient is to distinguish the goalkeeper
from other players. Since the goalkeeper is further away from the ball compared
to the remaining players, information of the goalkeeper usually contains more
noise and should be treated differently from other players in order to avoid false
positives and false negatives in determining the possession of the ball.

ITAndroids 2D Soccer Simulation Team Description 2019 3

This coefficient was improved with testing and causes the goalkeeper to dis-
regard information when the ball is too far away from him and to consider when
the ball is close. The net effect is more accurate information about the possession
when the ball is specifically in the defensive half of the field, the situation that
mostly matters to him.

Finally, to solve the problem of backpasses, it was determined that the goal-
keeper should not emit catch commands if the possession of the ball is with his
team. However, if the ball is going towards the goal, the goalkeeper uses an-
other command to move the ball away from the goal, for instance, the clear ball
behavior.

To measure results, 120 matches against the ITAndroids2017 team were car-
ried out, the results are shown in Table 1.

Table 1. Number of backpasses in 120 matches

ITAndroids2017|ITAndroids2018
of backpasses 46 1

Therefore, this shows a reduction of nearly 98% in the number of backpasses,
which shows a drastic reduction of the problem. Moreover, statistics were made
of wins, losses and draws against the ITAndroids2017 team, before and after
the possesion automaton improvement. The results are shown in Table 2, that
express good team improvements.

Table 2. Performance of ITAndroids2018 against ITAndroids2017

Before modification|After modification
Wins 375 % 45.8 %
Draws 26.7 % 34.2 %
Losses 35.8 % 20 %

3 Behavior Trees: Development Sugar for Behavioral
Robotics

In behavioral robotics, the robotic agent is modeled focusing in adaptability and
reactivity. Complex objectives can be accomplished by breaking in smaller sub-
objectives and creating Behaviors to structure how to do things with high level
decisions.

There are several ways to organize these decisions. The simplest and most
common is to use Finite State Machines (FSM), however, FSM do not scale with
growing number of states.

4 ITAndroids 2D Soccer Simulation Team Description 2019

Behavior trees are tree structures that permits describing generic decision
making by correctly combining internal Control Flux Nodes with Action Leafs
and Decision Leafs. After the tree is built, the decision making is executed by
just triggering transversal from the root.

These general flow control nodes make Behavior Trees highly modularized
and prompt for code reuse. Nodes and entires subtrees can be substituted to
achieve high adaptability to situations. Its natural granularity permits us to cre-
ate short behaviors without writing additional state transition logic, promoting
easy reactivity [5].

Behavior Trees can generalize popular decision structures like FSM, HFSM,
Decision Trees and Teleo Reactive programs [6] [10] but with principles appro-
priated for good software development practices.

We have started a simple and generic library for creating behavior trees in
C++. It achieves general use structure by intense use of templates and has
permitted us to reduce the project complexity. Figure 3 shows sample usage of
our library to build the tree shown.

BTBuilder builder;
BT defenseBT. attackBT. goalieBT:

/ Goalie Behaviour Tree

goalieBT
= builder.
compositeRoot<BT Selector>().
comp <BT_Sequence>(). // Defend with hands
BT DecisionLeaf>{new GoalieShouldCatch(}, “GoalieShouldCatch®"}.end().
decorate(new SuccessOnlyPolicy().)
Leaf<BT_BhvLeaf=(new Bhv Catch{), “BhvGoalieCatch").end().
end()
comp te<BT_Sequence=(). // Defend with feet
leaf<BT_DecisionLeaf>(new SelfIsKickable(), “SelfIsKickable").end().
decorate(new SuccessOnlyPolicy()).
Leaf<BT_BhvLeaf=(new Bhv_GoalieClearBall(), “BhvGoalieClearBall").end().

te<BT Selector>(). . // Just move
te<BT Sequence>()
f<BT DecisionLeaf>{new GoalieShouldChaseBall{}, "GoalieShouldChaseBall"}.end{).

decorate{ new.SuccessOnlyPo vi)).
leaf<BT_BhvLeaf>(new Bhv_GoalieChaseBall({), "BhvGoalieChaseBall").end().
end().
leaf<BT_BhvLeaf>({new Bhv_GoalieBasicMove(), "BhvGoalieBasicMove™).end().
end()
d(}
?

BhvGoalieCatch
BhvGoalieClearBall

GoalieShould
ChaseBall
BhvGoalieChaseBall

Fig. 3. Code for building our goalie behavior tree and the tree built.

ITAndroids 2D Soccer Simulation Team Description 2019 5

4 RoboCup Soccer Simulation Server Document

The RoboCup Soccer Simulation Server (rcssserver) is a program that con-
trols the simulation of the soccer matches based on server-client communication,
where each player is a client that sends and receives information from the server.

The communications is done via UDP/IP protocol with string messages.
A player/client connects with the server sending a init message, if the conec-
tion succeeds it receives information about match parameters and heterogenous
player types. The simulation occurs in cycles, where in each cycle the player send
commands, e.g, move, kick, and receives noisy information about the match state,
e.g., player positions, ball position.

An important option that can be passed to the server is to start the game
in the synchronized mode, for this you must start the server with the following
command:

$ rcssserver server::synch_mode=true

In this mode, a cycle changes immediately after all the clients send and receive
the messages, which makes the game faster because the players’ latency is nor-
mally less than the default cycle duration of 100ms.

There are two files that contain the parameters used by the server during
startup, server.conf and player.conf, which by default are located inside the
.rcssserver folder in the user’s home directory.

In these files, you can set parameters such as the number of different hetero-
geneous players available (player::player types), number of cycles of each half
of the match (server::half time), and opt for also receiving information with-
out noise with the options (server::fullstate_1) and (server::fullstate r), among
others.

Let us highlight here among all the options of the server, the possibility of
running simultaneous games, for this must be passed as parameters the connec-
tion ports for the server and the coach, e.g.:

$ rcssserver server::port=7000 server::coach_port=7001 \
server: :olcoach_port=7002

and make players and coaches connect to these ports too.

The server has no built-in UI to allow spectators to watch the match. How-
ever, there is also the possibility of connecting a special type of client, the mon-
itor. In official competitions, the monitor used is the rcssmonitor [9].

5 Conclusions and Future Work

This paper describes some of our efforts during the year of 2018 and shares
some of our knowledge about the rcssserver. Other advances made during 2018
and not mentioned in this work include making our man-marking strategy [3]

6 ITAndroids 2D Soccer Simulation Team Description 2019

robuster to noise and reoptimizing action chain parameters with Particle Swarm
Optimization [2] but higher processing power.

We are currently developing a general purpose platform of Deep Reinforce-
ment Learning to develop Neural Behaviors. We are also exploring the com-
bination of CMA-ES algorithms to optimize heterogeneous type selection and
studying the possibility of implementing state-of-art RFS filters to improve op-
ponent tracking as has been recently investigated in RoboCup [8].

6 Acknowledgements

We would like to acknowledge the RoboCup community for sharing their devel-
opments and ideas. Specially, we would like to acknowledge Hidehisa Akiyama for
agent2d [1], librese [7], soccerwindow?2 [11] and fedit2 [4] software. Current team
members are also grateful to previous ones who have made great contributions to
ITAndroids 2D. Finally, we thank our sponsors Altium, Intel Software, ITAEx,
Metinjo, Micropress, Polimold, Rapid, Solidworks, ST Microeletronics and Vir-
tual Pyxis. We also acknowledge Mathworks (MATLAB), Atlassian (Bitbucket)
and JetBrains (CLion) for providing access to high quality software.

References

1. agent2d-3.1.1, 2012, online, avaliable at: http://pt.sourceforge.jp/projects,/rctools/
downloads/51943/agen t2d-3.1.0.tar.gz/, consulted on December 2018.

2. Mello, F., Ramos, L., Maximo, M., Ferreira, R., Moura, V.: ITAndroids 2D Team
Description 2012 (2012)

3. Lema L., Coimbra F.: ITAndroids 2D Team Description 2018 (2018)

4. fedit2-0.0.1, 2017, online, avaliable at: https://osdn.net/projects/rctools/downloads
/68531 /fedit2-0.0.1.tar.gz/, consulted on December 2018.

5. Colledanchise, Michele, and Petter Ogren. Behavior Trees in Robotics and AI: An
Introduction. (2018). .

6. Michele Colledanchise, and Petter Ogren. How Behavior Trees Modularize Hybrid
Control Systems and Generalize Sequential Behavior Compositions, the Subsump-
tion Architecture and Decision Trees. In IEEE Transactions on Robotics (TRO)
2016.

7. libresc-4.1.0, 2011, online, avaliable at: http://pt.sourceforge.jp/projects/rctools
/downloads/51941 /libresc-4.1.0.tar.gz/, consulted on December 2018.

8. Cano P., Ruiz-del-Solar J. (2017) Robust Tracking of Multiple Soccer Robots Using
Random Finite Sets. In: Behnke S., Sheh R., Sariel S., Lee D. (eds) RoboCup 2016:
Robot World Cup XX. RoboCup 2016. Lecture Notes in Computer Science, vol 9776.
Springer, Cham.

9. rcssmonitor-15.2.1, 2017, online, available at: https://github.com/rcsoccersim /ressm
onitor /releases, consulted on December 2018.

10. Michele Colledanchise, and Petter Ogren. How Behavior Trees Generalize the
Teleo-Reactive Paradigm and And-Or-Trees. In Proc. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) 2016.

11. soccerwindow2-5.1.0, 2011, online, avaliable at:
http://pt.sourceforge.jp/projects/rctools/ downloads/519 42/soccerwindow2-
5.1.0.tar.gz/, consulted on December 2018.

	ITAndroids 2D Soccer Simulation Team Description 2019

