
RoboCup Logistics League
Graz Robust and Intelligent Production System

GRIPS

Vanessa Egger, Leo Fürbaß, Lukas Knoflach, Stefan Krickl, Jakob Ludwiger,
Stefan Moser, Gerald Steinbauer, Thomas Ulz, Manuel Weichselbaum

April 16, 2019

Abstract

The present paper presents team GRIPS (Graz Robust and Intelligent Produc-
tion System) and its approaches to the challenges in the RoboCup Logistics League
2019. Festo’s Robotino, a customized additional construction and some further
hardware, such as laser scanners, cameras, PC, and PLC, are used as a hardware
platform. The software architecture is built in a multi-layer format. A scheduler/-
planner functions as a central decision-making instance for all robots at the top
player. Beneath this layer, a procedural reasoning engine (Open PRS) allows for
individual decisions. At the lowest level, the robot operating system (ROS) exe-
cutes the tasks assigned to the robot by the top layer. To improve the robustness of
this system, observers monitor the lowest level. For this purpose, a diagnosis sys-
tem is implemented which also reports abnormal behavior and likely underlying
reasons to the upper layers. Malfunctioning components are thus detected and can
be repaired.

1 Introduction
The main aim of the RoboCup Logistics League is to promote research in automated
and flexible production and serves as a testbed for methods dealing with smart pro-
duction. For this purpose, the league’s competition simulates a smart factory in which
different products must be manufactured in several steps at different production ma-
chines. During production, the various machines must be supplied with blanks and
resources required for product manufacturing. A so-called RefBox orders products in
a random order and thus simulates demands for products. All transportation tasks for
products and intermediate products are performed by a fleet of autonomous robots.
As this setting involves continuous changing of the product demands, the autonomous
robots simulate the logistics challenges in future production systems. Therefore, the
RoboCup Logistics League is an ideal testbed for innovative planning/scheduling al-
gorithms and control methods for fleets of robots.

1



Table 1: Hardware components used in our approach.

Component Quantity Description
Robotino 3 3 Basis of all three robots.
Intel NUC 3 Additional computation device on all three robots.

Sick TIM551 3 Laserscanner for robot navigation.
Linksys Router 4 Network connections for all three robots and teamserver.
Axis Camera 3 Camera used for QR code detection.
Sick Camera 3 Camera used for conveyor alignment.

Team GRIPS was founded in 2015 as part of the practical course ”Construction of
Mobile Robots” held at Graz University of Technology. Students in this class have to
find solutions for different challenges relevant to the Robocup Logistics League. When
GRIPS was first founded, it already participated in the RoboCup World Cup which
in2016 was held in Leipzig, Germany (team description paper [1]). GRIPS finished in
third place in its first year of participation and was thus voted rookie of the year. At
the RoboCup 2017 held in Nagoya, GRIPS achieved second place. In 2018, GRIPS
has already participated at the RoboCup German Open in Magdeburg, Germany and
finished in second place. After winning the thrilling finals at the RoboCup 2018 in
Montreal, Canada, GRIPS earned its first world champion title.

The following section of this paper describe the hardware modifications performed
on the Robotino and any additional hardware used. Section 3 explores the algorithms
and software architecture implemented on the configured hardware platform. The next
section briefly discusses the overall mission strategy. In Section 5 the implemented
development process are presented. The next section bridges this content to current
research at the institute. Finally, this paper concludes with Section 7.

2 Hardware
GRIPS uses a multi-layer system architecture (see Fig. 1). An external PC acts as a
so-called teamserver which is used to coordinate the autonomous robots by assigning
tasks to them. The robotic base we are using is Festo’s Robotino [2] (see Fig. 2b). The
robot team consists of the three robots allowed per team according to the rulebook.
All three robots are identical in terms of hardware and are equipped with a customized
construction to achieve the correct height for the mounted gripper in order to be able
to grab the products from the conveyors and shelves. Furthermore, we equipped the
Robotinos with an additional external computer to improve computational power. For
navigating the robots we use a Sick TIM551 laser scanner. Furthermore, we mounted
a front facing camera on all robots to detect the machines’ QR-tags. To achieve the
necessary precision for grabbing and delivering products at the conveyors, an additional
camera is mounted at the level of the gripper. A network router is used to connect all
these network devices and to provide reliable WiFi capabilities for the robots. The used
equipment is listed in Table 1.

2



Teamserver

Robot 1 Robot 2 Robot 3

Local Knowledge

Global Knowledge

Figure 1: System architecture used in our approach. The teamserver holds global
knowledge of the game state while each robot only possesses local knowledge.

3 Software
Following the idea of a three-layer architecture [3], the software is structured (as de-
scribed in [4]) as follows: scheduler/planner, mid-level control and low-level. We in-
troduced a strict communication scheme where only adjacent layers communicate with
each other to achieve an increasing abstraction of the real world from layer to layer.
Lower layers provide functionality to the higher layers (see Fig. 2a).

The high-level is responsible for coordinating the robots to achieve a common goal.
It is also in charge of distributing tasks to the robots and to ensure that two robots do
not use the same resource at the same time. Thus, the high-level needs to have global
knowledge of the game state. As can be seen in Fig. 1, the high-level is running on a
dedicated PC.

The mid-level controls the individual robots, i.e. the mid-level plans the actions
required to finish the tasks assigned to the robot by the high-level. Additionally, the
mid-level is responsible for rectifying faults in the task execution as well as possible
for the robot to resolve the problem locally by the respective robot.

The low-level is responsible for executing primitive actions. These actions range
from detecting the orientation of the machine to moving between way-points or open-
ing the gripper. This level is the most reactive one and is the only level which performs
near real-time activities.

Each level will be described in more detail in the remaining subsections of this
section.

3.1 High-Level (Scheduler/Planner)
The scheduler/planner, being in the top layer of the structure, has the most abstract
view. It is the only instance communicating with the referee box and is therefore re-
sponsible for keeping track of the orders and of forwarding the robot status arriving
from the lower layers. As there is only one scheduler/planner for all robots, the re-
source management is also done on this level. Thus, the scheduler/planner is the only
instance in our architecture that is in possession of a global knowledge base containing

3



(a) Overview of the software architecture. (b) Adapted Robotino 2.

Figure 2: Used software architecture and hardware setup.

4



the complete game state. A resource manager included in the scheduler/planner keeps
track of the current state of the production machines and their usage. That is, only
one robot is granted permission to use a production machine at a time. This resource
managements helps to avoid inconsistent production machine configurations as well as
possible conflicts between robots.

In addition to the resource management, the scheduler/planner also maintains a
database containing a pool of active tasks, the game state, and the state of the robots
and machines. This is used to distribute the tasks to the robots (i.e. atomic production
steps to be made to fabricate a product) in order to maximize the points awarded. In our
approach, each production order is split into a set of three atomic tasks: GetProduct,
DeliverProduct and PrepareCap.

GetProduct Task: This task comprises the following two steps for a robot:

• The robot moves to the specified machine and side.

• The robot then grabs the product with its gripper.

DeliverProduct Task: This task comprises the following two steps for a robot:

• The robot moves to the specified machine and machine side.

• The product that is currently in the robot’s gripper is fed into the machine.

PrepareCap Task: This task comprises the following steps for a robot:

• The robot moves to the specified cap stations input side.

• The robot detects the products with mounted cap on the shelf

• The robot picks one of those products and feeds it in the input of the cap station

3.1.1 Teamserver Visualization

Since every team uses three robots and the seven machines provided in the production
hall during the RCLL competitions, it is hard to observe the tasks of robots and the
current states of machines simultaneously. However, knowing what a robot is currently
doing or planning to do is essential in many situations to foresee errors or possible
problems. Issues, such as bad localization or wrong task execution, could disrupt the
manufacturing process. If we are able to foresee such issues, maintenance can be
executed in an earlier stage and thus avoid the occurence of errors beforehand. As a
solution, we developed a simple website to visualize information on the robots and
machines. The information about each robot contains its state, current task, next task,
current product and many more. The machine’s information contains the current state,
whether it is currently being used by a robot, etc. As our team server uses the Spring
framework, which is based on a model-view-control architecture and already supports

5



web developement, the creation of a website skeleton linked to our team server was
not a difficult task. We use web sockets to provide the data from our team server to the
website. To transfer the information to the website, a class needs to be defined holding
the information to be displayed. This class is referred to as the model. In addition,
a second class, the controller, needs to be generated. The controller class holds the
methods executed when get, post or similar types are called from the webpage. The
controller provides requested data, and also writes received data to some data structure.
Finally, the webpage displays the requested data in a certain format.

3.2 Mid-Level Control
The mid-level control is based on the Open Procedural Reasoning System (Open PRS) [5].
Open PRS implements the belief-desire-intention (BDI, [6]) system and allows opera-
tional plans (OPs) to be designed using a graphical user interface. Within a BDI system
the agent keeps track of the world’s current state and the goals that should be achieved.
To achieve a goal, the agent selects one suitable OP and executes it. Through this
paradigm the robot can achieve a task depending on the environment and the robot’s
status. The integrated reasoning engine also allows these OPs to be executed in par-
allel. We utilize this feature, for instance, in the exploration phase to simultaneously
explore the world while also looking for unseen QR-tags.

An example OP that is used to close the gripper can be seen in Figure 3. This
example should illustrate some functionalities and the syntax. This OP is initiated by
posting the invocation part (achieve (gripobject)) using the message pass-
ing (MP) interface of OPRS. The plan is only applicable if the gripper is open at the
moment, i.e. ((test (gripper open)). After successful execution of this plan,
(gripper-holds-object) is written in the database. On the edges of the graph,
subgoals can be posted and (evaluable) predicates can be tested. E.g. the posting of the
goal (gripper closed) is directly forwarded to the lower level as it is an atomic
part of the execution chain.

Additionally, error detection and error handling of low-level functions is done in
the mid-level. The system tries to determine what went wrong and what is the most
effective way to recover from the given error. In order to do so the mid-level comprises
a knowledge base containing the state of the robot and its environment to find an ef-
ficient recovery if there exists one. It is important to note that any failure detected by
the diagnosis system (see Section 3.4 for details) is also reported to the mid-level and
is stored in the knowledge base. Thus, the mid-level also tries to recover from faults
detected through the diagnosis system.

3.3 Low-Level
The lowest layer is mainly based on the open robot operating system (ROS [7]). Here,
basic atomic actions are advertised to the layer above as a ROS action server. Different
services are advertised here, e.g. opening/closing the gripper, locally navigating to
a machine, aligning in front of a machine and so on. Performing these actions, all
the error detection and a possible error recovery is made by the ROS service. In the

6



Figure 3: Sample OPRS plan to grab some object with the gripper.

following part of this subsection we will briefly discuss the most important parts of the
low-level functions.

3.3.1 Way-Point Navigation

In order to retrieve or deliver objects, the robot moves between defined way-points.
These way-points are stored in the mid-level as abstract identifiers e.g. the output of
the base-station would be stored as BS-O. In order to move to a given way-point, the
low-level uses a table to look up the real world coordinates for the abstract identifier
and afterwards plan to move to this way-point. To move to the given coordinates,
we use the move base package of ROS [8]. This package comprises a global planner
that uses the map to find a path between the current robot position and the desired final
position. In order to avoid the different production machines, these machines are added
to the navigation map. Furthermore, after finding a global plan a local planner is used
to move along the path by considering and avoiding detected objects on the planned
path.

3.3.2 Conveyor Alignment

During the production phase the robot needs to deliver and retrieve products from the
conveyor multiple times. This is done through a way-point that is in close proximity
to the desired conveyor. Thus, a robot is able to move near the intended machine.
After that, the QR-Code and the laser scanner is used to approach the machine and to
align the robot close to the conveyor belt. Since combining the information provided
by the QR code detecting camera and the laser scanner might be inaccurate, we use
an additional elevated camera on our robot for fine aligning the robots. For this, the
conveyor (also products, slides, and shelves) are detected through an additional camera

7



and a HOG detector.
HOG Detection: The histogram of oriented gradients (HOG) is used to detect

the positions of products, conveyor bands, slides and shelfs on different machines. The
HOG detector identifies regions of interest (ROI) in images based on previously learned
features. To identify the features, images for training and testing need to be taken. In all
images the ROI needs to be marked (see Figure 4) for an example). Then the training
and testing images are forwareded to the HOG detector. The HOG then tries to identify
the features of the given ROIs and generates a feature set. The training images are used
to find the features, and the testing images are used to test if the features identified
from the training images match the ROIs defined in the testing images. In the logistics
league, the robot approaches a machine and stops at a certain position close enough to
the desired objective. When in position, the camera takes four images with different
light conditions provided by the 2 headlights. The head lights are used to reduce the
effects of changing environmental light such as overhead lights or daylight on the taken
images. The images are analyzed by the HOG detector and the resulting ROIs are
averaged to find the correspoing feature (see Figure ?? for an example). Four images
are taken to increase the possibility of finding a correct ROI in one of the images even
when the lighting conditions differ from the conditions the HOG detector was trained
on. In our case, we use several different HOG detectors to detect different objects such
as products or the conveyor band. Each of these detectors was trained with different
images.

Figure 4: Example of a marked ROI for HOG training.

8



Figure 5: Example learned features of our HOG detector.

3.4 Diagnosis System
In order to guarantee a certain degree of dependability, an online diagnosis system
is used in our approach [9]. The diagnosis system uses a set of observers to monitor
different properties of the system e.g. the frequency of the communication between two
different low-level modules. These observations are then compared to defined normal
system behavior. If the observation yields a discrepancy, a diagnosis on how to fix the
problem is calculated. This is done using a diagnosis engine based on PyMDB [10]
which calculates a consistency based diagnosis [11]. Thus, the result of the diagnosis
is a set of low-level modules that, if assigned to be faulty, would explain the undesired
observations. The information of the possible faulty components is reported to the
mid-layer in order to allow a repair mechanism to be triggered. Moreover, a simple
rule engine is used to directly trigger simple actions (e.g. write a log file) once a faulty
component has been identified.

3.5 Communication
The communication between the scheduler/planner and the mid-level control is done
in a similar way as the communication with the referee box where serialized messages
generated with the open protocol buffer data format (protobuf) developed by Google
are used. Also, the internal communication in the mid-layer is implemented using such
serialized streams since the standard communication interface of Open PRS has some
limitations that are mitigated by our implementation. The mid-level control commu-
nicates with the low-level using so-called ROS action servers, i.e. the low-level offers
actions that can be triggered by the mid-layer. Implementing ROS action servers allows
fetching the current status of the action during execution as well as a return status after
the execution is finished or failed.

4 Mission Strategy
The game can be split up into two main phases, exploration and production that will be
discussed separately in this section.

9



4.1 Exploration
In the exploration phase each robot will be in charge of exploring one column of our
half of the field. To do so, the robot moves on the field and searches for unseen QR-tags.
Whenever one is found, the robot moves to the corresponding machine and measures
the machine’s orientation using the laser scanner. The collected information is then
sent to the high-level Control. The scheduler/planner gathers all reports from the robots
with additional information about the certainty of these observations. Having multiple
observations with given probabilities, a safe report can be sent to the referee box to
avoid negative points resulting from wrong reports. Exploring only one half of the field
is sufficient due to the symmetry of the game field. Currently we develop a constraint
based consistency check for the reported machines and zones.

4.2 Production
The benefits offered by the three-layer architecture (see Section 3) can be utilized best
in this phase of the game. The scheduler/planer splits up the orders into atomic tasks
to build a desired product and stores them in a task pool. The tasks are auctioned
to the robots ordered by their priority to achieve a maximum number of points. The
scheduler/planner maintains a global view on the current game to achieve a global
maximum of points. Atomic tasks are, for instance, providing a cap, mounting a cap,
discarding the base and so on. All the robots bid for the tasks (if they are currently
not executing a task) with their current local cost, i.e. the robot doing the job most
efficiently wins the bid. As a robot needs a modular production system (MPS), it tries
to get a mutual lock for the machine via the scheduler/planner. There, a global locking
table is kept to avoid congestion and multiple configurations of machines.

5 Development
In order to build up a robust system during our development, we use a continuous
integration [12] server that executes builds as well as unit and integration tests. These
integration tests are executed with the help of the Gazebo simulation that is provided by
BBUnits and the Carologistics team [13, 14]. Through this continuous testing software
faults and integration problems can be found more easily. To encourage other teams to
follow the idea of continuous integration, we plan to release the software to perform
these tests under an open source license after it has reached a certain level of maturity.

6 Influence Through Current Research
Within the focus of the current research at the Institute for Software Technology (IST)
hosting the team is the usage of a model-driven approach to develop dependable au-
tonomous robots. The idea is to use models as a central part of the developing pro-
cess to automatically test during software development and to diagnose the system at
runtime. These processes should be automated as much as possible transforming in-
formation such as requirements to models automatically or by reusing existing models

10



[15, 16]. This approach has already been shown to be applicable for an industrial use
case. Thus, we hope that this approach also results in a robust system for the logistic
league.

Furthermore, current research is done in order to design an agent architecture which
allows a model driven approach to be easily integrated into a robotic system. This
architecture should allow a robotic system to be more dependable and thus run for long
periods of time. We expect that the result of this research is of special interest for the
logistics league as this properties are of high interest for smart production use cases.

Finally, we have investigated different high-level approaches to control the robot
fleet together with the Carologistics team [17]. The high-level approach evaluated was
based on YAGI (Yet Another Golog Interpreter), which is an implementation based on
the ideas of the logic-based agent control language GOLOG. YAGI allows imperative
as well as declarative parts to be used; thus, programming and planning can be balanced
between ease of use and performance.

7 Conclusion
In order to get a global view of the current game state we use a central planning and
scheduling instance that distributes the robot’s tasks through an auctioning system. The
robots use a BDI system in order to execute the tasks in a reliable and reactive manner.
Additionally, the robots will be observed during run-time in order to detect faults and
allow a fast recovery from failures. The robotic base we use for our robots is Festo’s
Robotino 3 which was modified such that the robot is capable of fulfilling all necessary
tasks. Based on the research performed at the Institute for Software Technology at Graz
University of Technology, we expect to provide the league with new ideas, to design
more dependable systems.

Conformity with the Rules We hereby declare that our presented hardware and
software architecture satisfies all the requirements stated in the RoboCup Logistics
Rulebook 2018 (published January 25th, 2018).

References
[1] Haas, S., Keskic, D., Mühlbacher, C., Steinbauer, G., Ulz, T., Wallner, M.:

Robocup logistics league tdp graz robust and intelligent production system grips.
(2016)

[2] Karras, U., Pensky, D., Rojas, O.: Mobile robotics in education and research
of logistics. In: IROS 2011–Workshop on Metrics and Methodologies for Au-
tonomous Robot Teams in Logistics. (2011)

[3] Gat, E., et al.: On three-layer architectures. Artificial intelligence and mobile
robots 195 (1998) 210

11



[4] Wallner, M., Muehlbacher, C., Steinbauer, G., Haas, S., Ulz, T., Ludwiger, J.: A
robust and flexible software architecture for autonomous robots in the context of
industrie 4.0. In: Austrian Robotics Workshop. (2017) 67–73

[5] Ingrand, F.F., Chatila, R., Alami, R., Robert, F.: Prs: A high level supervision and
control language for autonomous mobile robots. In: Robotics and Automation,
1996. Proceedings., 1996 IEEE International Conference on. Volume 1., IEEE
(1996) 43–49

[6] Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-
desire-intention model of agency. In: Intelligent Agents V: Agents Theories,
Architectures, and Languages. Springer (1998) 1–10

[7] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. Volume 3. (2009) 5

[8] Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office
marathon: Robust navigation in an indoor office environment. In: International
Conference on Robotics and Automation. (2010)

[9] Loigge, S., Mühlbacher, C., Steinbauer, G., Gspandl, S., Reip, M.: A Model-
Based Fault Detection - Diagnosis and Repair for Autonomous Robotics systems.
In: Austrian Robotics Workshop. (2017)

[10] Quaritsch, T., Pill, I.: Pymbd: A library of mbd algorithms and a light-weight
evaluation platform. Proceedings of International Workshop on Priciples of Di-
agnosis (DX) (2014)

[11] Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence 32(1)
(1987) 57–95

[12] Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software
quality and reducing risk. Pearson Education (2007)

[13] Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the robocup logis-
tics league with real-world environment agency and multi-level abstraction. In:
RoboCup 2014: Robot World Cup XVIII. Springer (2014) 220–232

[14] Niemueller, T., Reuter, S., Ewert, D., Ferrein, A., Jeschke, S., Lakemeyer, G.:
Decisive factors for the success of the carologistics robocup team in the robocup
logistics league 2014. In: RoboCup 2014: Robot World Cup XVIII. Springer
(2014) 155–167

[15] Simón, J.S., Mühlbacher, C., Steinbauer, G.: Automatic model generation to
diagnose autonomous systems. In: Proceedings of the 26th International Work-
shop on Principles of Diagnosis (DX-2015) co-located with 9th IFAC Symposium
on Fault Detection, Supervision and Safety for Technical Processes (Safeprocess
2015), Paris, France, August 31 - September 3, 2015. (2015) 153–158

12



[16] Mühlbacher, C., Gspandl, S., Reip, M., Steinbauer, G.: Improving dependability
of industrial transport robots using model-based techniques. In: Robotics and
Automation (ICRA), 2016 IEEE International Conference on, IEEE (2016) 3133–
3140

[17] Ferrein, A., Maier, C., Mühlbacher, C., Niemueller, T., Steinbauer, G., Vassos,
S.: Controlling logistics robots with the action-based language yagi. In: IROS
Workshop on Taks Planning for Intelligent Robots in Service and Manufacturing.
(2015)

13


	Introduction
	Hardware
	Software
	High-Level (Scheduler/Planner)
	Teamserver Visualization

	Mid-Level Control
	Low-Level
	Way-Point Navigation
	Conveyor Alignment

	Diagnosis System
	Communication

	Mission Strategy
	Exploration
	Production

	Development
	Influence Through Current Research
	Conclusion

