
LUHbots RoboCup@Work 2019 Team
Description Paper

Leonard Eberding1, Salem Guezguez1, Maximilian Hachen1, Niklas Hahn1,
Oliver Uphus1, Simon Lebbing1, Daniel Wittwer1,

Marc Warnecke2, and Daniel Kaczor3

1 LUHbots, Leibniz Universität Hannover
Mechatronik Zentrum Hannover

Appelstraße 11, 30167 Hanover, Germany
info@luhbots.de

http://www.luhbots.de
2 Hannover Centre for Mechatronics, Leibniz Universität Hannover

warnecke@mzh.uni-hannover.de
3 Institute of Mechatronic Systems, Leibniz Universität Hannover

daniel.kaczor@imes.uni-hannover.de

Abstract. In this paper we provide a description of the LUHbots team
of the Leibniz University Hanover. We describe the current state of
the team as well as current plans and research goals towards the 2019
RoboCup@Work tournament in Sydney, Australia. The software is based
upon a ROS-architecture and the hardware uses a KUKA youBot as a
basis. The focus of the team lies with failure tolerant approaches to au-
tonomous mobile robotics.

1 Introduction

The LUHbots team was founded in 2012 at the Institute of Mechatronic Systems
Leibniz Universität Hannover, consists of bachelor and master students. Most of
the founding team members have participated in the research inspired practical
lecture RobotChallenge [9]. Nowadays the team is a part of the Hannover Centre
for Mechatronics. The team consists of students from mechanical engineering,
computer science, engineering and business administration and navigation and
fieldrobotics. In 2012 the LUHbots team first competed in the RoboCup@Work
challenge and was able to win the competition [8], in 2013 a second place was
achieved [2]. In 2015 the LUHbots won both events, the German Open and the
RoboCup in Hefei. In 2016 the team successfully completed the RoboCup@Work
challenge in Leipzig (Germany), again achieving the first place.

2 Hardware

Our robot is based on the mobile robot KUKA youBot (see Fig. 1) [3]. The
robot consists of a platform with four meccanum wheels [6] and a five degrees of



2 LUHbots RoboCup@Work TDP 2019

freedom (DoF) manipulator. Additional a gripper is attached at the end of the
manipulator (see Fig. 1). The internal computer of the youBot has been replaced
by an Intel Core i7 based system. Furthermore we added a Nvidia Jetson TX2
board to run our computer vision. In addition, the robot is equipped with an
emergency stop system, allowing for keeping the platform and the manipulator
in the current pose when activated. The manipulator has been remounted to in-
crease the manipulation area. The hardware itself does not offer failure tolerance,
this is only achieved in combination with software.

(a) LUHbots youBot (b) The youBot manipula-
tor

Fig. 1: LUHbot 2019 - equipped with a new Gripper and the Intel RealSense
D435 camera.

2.1 Sensors

The youBot is equipped with two commercial laser range finders (Hokuyo URG-
04LX-UG01) at the platform’s front and back. A RGB-D camera (Intel RealSense
D435) mounted on the wrist of the manipulator (see Fig. 1a) is used for object
detection and classification.

2.2 Gripper

One of the major hardware advances performed by the team is the development
of a custom gripper. The original gripper has a low speed and stroke. As a
result, it is not possible, to grasp all objects defined by the RoboCup@Work
rule book, without manually changing the gripper-fingers. Besides the limited
stroke, the low speed limit does not allow for an appropriate grasping of moving
objects. An advancement was to include force feedback into the gripper. Thanks
to the integrated feedback within our custom made gripper, we are able to verify
performed grasps. If a failure occurs during grasping, we are able to recover.



LUHbots RoboCup@Work TDP 2019 3

3 Approach

We take advantage of an open source software framework called Robot Operating
System (ROS) [11]. We are using the Kinetic release. In our opinion dependability
is one of the most important aspects of mobile robots, therefore we are constantly
improving our testing procedures.

3.1 Overview

Due to the ROS based architecture, our system is based on different nodes
communicating with each other using ROSTCP. For design and better insight for
software developers nodelets are additionally implemented in the state machine.
This way a hierarchical system can be implemented reaching from the Refereebox
Connection to rudimentary operations (RO). RO’s are defined as single actions
independent of external factors. They are implemented using ROS action servers
enabling the robot to receive updates of current tasks and cancelling them if
necessary. Together they compose all navigation and manipulation actions. Also
the software has been upgraded to a “Sense-Model-Think-Act“ system. This
means, that the data of all sensors are primarily accepted and directly used in the
“Model“ node. The “Think“ software (mainly state machine and task planner)
then use this stored information to make decisions and give this decision to the
“Act“ system, which is composed of different RO’s. This architecture enables the
robot to store and learn from data generated during the tests.

Fig. 2: Overview of the software architecture, Colours: Orange: Sense; Blue:
Model; Green: Think; Red: Act. The laser watchdog is used as an extra redun-
dancy for the navigation system and works outside the “Sense-Model-Think-Act“
System.



4 LUHbots RoboCup@Work TDP 2019

3.2 Manipulation

During the last years we developed a new software system that can be seen
as a software development kit (SDK) for manipulation tasks with the youBot.
The aim was to facilitate the development of applications for the youBot by
providing advanced functionality for the manipulator and the mobile platform
combined with user friendly interfaces. Some of the features for the manipulator
are: inverse kinematics, path planning, interpolated movement in joint- and task-
space, gravity compensation and force fitting. Features for the mobile platform
include incremental movement, collision avoidance and movement relative to the
environment based on laser scans. The provided interfaces contain a documented
API and a graphical interface for the manipulator. In the RoboCup we use this
software e.g. to grab objects using inverse kinematics, to optimise trajectories and
to create fast and smooth movements with the manipulator. Besides the usability
the main improvements are the graph based planning approach (see Fig. 3) and
the higher control frequency of the base and the manipulator. Planning on a
graph which is based on known and, therefore, valid positions leads to a higher
robustness. Using an A*-approach the best path is generated [5]. The higher
frequency leads to better executed motion plans and an overall smooth and more
accurate motion. The manipulation node is composed of different rudimentary
operations, mainly different grip, place and scan actions.

(a) Interpolation based planning (b) Graph based path planning

Fig. 3: Graph based approach for the path planning, thanks to the proposed
approach (b) a shorter motion is executed

3.3 Navigation

The navigation is based on the ROS navigation stack. The main improvement has
been done in the local and global planners. The global planner has been extended
to calculate the orientation for each pose of the global plan. This helps to reach
the bottlenecks in the best position for a collision free and fast passing. Also we
implemented a watchdog which operates based on the laser scanner data and is
therefore much faster than a costmap-based local planner. The watchdog reduces



LUHbots RoboCup@Work TDP 2019 5

velocities if an obstacle is too close, or permits the execution of a movement
command if a collision would be eminent. Global planner, laser watchdog and
local planner play together and build a navigation trio which can navigate the
robot robustly through the arena. The navigation is also split into rudimentary
operations (RO’s) which limit the local planner on possible actions.

3.4 Vision

We use the Intel RealSense D435 for object recognition, which has one great ad-
vantage compared to similar devices. It works with a stereo- and infrared camera
combined, which assures us more stable images. We use the RGBD-Pointcloud
given by the camera to segment the image, to extract features and to classify
the objects. To get the positions of the objects, we differentiate the points in our
pointcloud by height. Then, the objects are classified using our neural network
(which we trained with tensorflow) and a random forest classifier [12] [1]. Finally,
the 3D-points are used to determine the object’s position and orientation. In or-
der to get a robust vision system that can handle miss-detections and which can
memorise detected objects, all detections are clustered using a modified version
of DBSCAN [4]. Each cluster is weighed, filtered and the positions are aver-
aged. Then, the clusters are classified as objects or as failures. We are currently
developing a new dynamic way to memorise and acquire accurate object posi-
tions. Displaying the objects as normal distributions and using a Kalman-filter
to update their positions based on camera errors and observations[7].

Fig. 4: Detected objects, classified and scored

3.5 Task planning

Our task planning is based on a graph based search. In each step all known
service areas are used as possible navigation tasks. All objects on the back of the



6 LUHbots RoboCup@Work TDP 2019

robot (there are up to three allowed) are used as possible placing tasks and the
objects on the service area are used as grasping tasks. A greedy-based planning
[10] is used up to a max depth and repeated until a complete plan is produced.
The greedy algorithm is based on the cost function (see Eq. 1) taking the time
to perform the task, the probability to fail and the expected output. For the
navigation tasks the distances are pre-computed based on the known map. The
manipulation time costs are averaged based the last respective manipulation
action. When the state machine is not able to successfully recover a failure, the
task is rescheduled with an increased probability to fail.

Scoren+1 =
V aluen + V alueAction ·

∏
Chancei∑

Costi
(1)

Task Execution

Task Logic

Navigation Manipulation

Statemachine
Start

Task Callback

Referee
Box

TCP/IP
Request

Task

Task Received

Task Rescue

Task
Planner

Nav Exception Move to Goal

FinePos Park

Execution
ManipulationFailed

Task
Successful

Service Request

Service Response
Recall Task

Planner

Rescue

Start
Nav

Success Start Man

Success

Prepare
Goal

Retry

Failed

Action Server
FinePos

Retry

Action Server
MoveBase

Action Server
youbot_rc_manipulation

Success
Prepare

Manipulation

Goal
Result
(Failed 

Objects)

Start
FinePos

Result

Goal

Nav
Success

GoalResult

Failed Statemachine

State

Transitions

Extern Calls

Extern
Programs

Fig. 5: State machine



LUHbots RoboCup@Work TDP 2019 7

3.6 State machine

The state machine is written in C++ and ROS. Combining three different
nodelets into one node gives us the possibility to optimise manipulation and
navigation processes independent of each other. The state machine nodelet is
used as an interface to the task planner, receiving new tasks and sending back
failed tasks. This nodelet then passes the task information to the navigation or
manipulation state machine. These are only responsible for deciding on which
rudimentary operation (RO) to use. Since all RO’s are implemented as action
servers the nodelet can cancel tasks and reassign them if data in the world
model suggests a change in action. The three nodelets are the main software
parts (apart from sensor nodes) communicating with the world model to get
information about their next task.

3.7 World model

The world model is used as a data storage system which communicates to the
think-software (state machine and task planner).
It stores all data which can be used for faster completion of tasks including speed
of the robot, possible locations of objects, cost-maps, maps, robot position, type
of workstations etc. A data saver is being developed, enabling the robot to recover
from critical failures without human interference making the system more robust
in regards of critical system errors and external influences.
In the future the saved data can also be used for machine learning algorithms
to optimise particular nodes, especially rudimentary operations.

Fig. 6: Manipulation from the conveyor belt.



8 LUHbots RoboCup@Work TDP 2019

3.8 Manipulation of dynamic objects

Our previous approach for gripping moving objects limited us. We could only
grip two objects in one orientation. Since the approach was based on calculating
a point where to grasp the object and then performing a standard grasp. Re-
sulting in problems with orientations since the speed was not used to alter the
grasp motion. The new approach differs after the object recognition (see Fig.
6 - at time 1 ). The robot measures the speed and position of the object. It
calculates the point and time where the object reaches the task place(see Fig. 6
- at time 2 ). The arm moves above the calculated point. Waits for the object
and accelerates until the arm is directly above the moving-object with the same
speed. Overlapping the down movement with the current speed until gripping
the object (see Fig. 6 - at time 3 ). The advantage of this approach is that while
the calculated position and speed are correct every orientation and much higher
objects can be gripped.

4 Acknowledgements

We would like to thank a couple of institutes and persons supporting our work.
The team is supported by the Institute of Mechatronic Systems, the Institute of
Systems Engineering – Real Time Systems Group, the student affairs office of the
faculty of mechanical engineering, the society for the promotion of geodesy and
geoinformatics and the Hannover Centre for Mechatronics. The team is being
supervised by Marc Warnecke.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine
learning. In: OSDI. vol. 16, pp. 265–283 (2016)

2. Alers, S., Claes, D., Fossel, J., Hennes, D., Tuyls, K., Weiss, G.: How to win
robocup@work? the swarmlab@work approach revealed. In: RoboCup 2013: Robot
World Cup XVII. pp. 147–158. Lecture Notes in Computer Science (2014)

3. Bischoff, R., Huggenberger, U., Prassler, E.: Kuka youbot - a mobile manipulator
for research and education. In: ICRA (2011)

4. Ester, M., Kriegel, H.P., S, J., Xu, X.: A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In: Proc. of 2nd International
Conference on Knowledge Discovery and. pp. 226–231. AAAI Press (1996)

5. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on
4(2), 100 –107 (july 1968)

6. Ilon, B.: Directionally stable self propelled vehicle (Jul 17 1973), uS Patent
3,746,112

7. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal
of basic Engineering 82(1), 35–45 (1960)



LUHbots RoboCup@Work TDP 2019 9

8. Leibold, S., Fregin, A., Kaczor, D., Kollmitz, M., El Menuawy, K., Popp, E., Kot-
larski, J., Gaa, J., Munske, B.: Robocup@ work league winners 2012. In: RoboCup
2012: Robot soccer world cup XVI, pp. 65–76. Springer (2013)

9. Munske, B., Kotlarski, J., Ortmaier, T.: The robotchallenge - a research inspired
practical lecture. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ In-
ternational Conference on. pp. 1072–1077 (Oct 2012)

10. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1982)

11. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

12. Statistics, L.B., Breiman, L.: Random forests. In: Machine Learning. pp. 5–32
(2001)


