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Abstract. This team description paper presents the team AutonOHM
which won the RoboCup@Work world cup competition in 2017 and 2018.
Detailed description of their hardware and software concepts are pre-
sented. The software section introduces the adopted solutions for the
@work navigation, perception and manipulation tasks. Furthermore, im-
provements for future participation in the RoboCup world cup in Sydney
2019 are discussed.

1 Introduction

The RoboCup@Work league, established in 2012, focuses on the use of mobile
manipulators and their integration with automation equipment for performing
industrial-relevant tasks [3]. This paper presents our teams solution approaches
and concepts. This year, the main focus lies on the transition to a new base
platform. This is necessary, because the current hardware is worn out and cannot
be repaired due to inavailable spare components.

Chapter 3 shows the team’s current system hardware and the future concept
for this year. In chapter 4 the main software modules such as the state machine,
localization and perception are presented. Finally, the conclusion provides a
prospect to further work of team AutonOHM (chapter 5).

2 AutonOHM

The AutonOHM-@Work team at the University of Applied Sciences Nuremberg
Georg-Simon-Ohm was founded in September 2014. In 2017, the team was able to
win both the German (Magdeburg) and also the World Championship (Nagoya)
title. With the knowledge and experience gained in the former tournaments, the
team was also able to defend both of these titles in 2018.

As most of the teammembers of the sucessfull former team are not taking
part in RoboCups anymore, the main goal this year is the knowledge transfer
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to the new teammembers, while also trying to defend the German (Magdeburg)
and the World (Montreal) Championship titles.

The new team consists of Bachelor and Master students, supervised by a for-
mer teammember and Master of Applied Research student. In addition, former
teammembers will be involved in the training process of the new teammembers
during 2019.

Fig. 1: Team AutonOHM 2019

As mentioned earlier, the new team also has to use a new mobile platform, as
the old system is not reliable anymore and therefore not usable in a competition.
During this process, they will also modify the current software so it can be used
on the new system. Although the old system was very successful, the new team
members will add new features and improvements during the transition process
regarding both hard- and software. This includes the gripper, task planner and
object recognition.

3 Hardware Description

As the new mobile platform is still under construction, we cannot display it
yet. Therefore, the old system, which was used in the past competitions, will be
discussed here. This should still represent the new system, as the modifications
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to the standard platform will be maintained. Table 1 shows our current hard-
ware specifications. We use the KUKA omni directional mobile platform youBot
(Fig. 2), as it provides a hardware setup almost ready to take part in the com-
petition. Nevertheless, we made some modifications for a better performance.

Fig. 2: KUKA youBot platform of
the team AutonOHM.

Tab. 1: Hardware Specifications.

PC 1

CPU NUC7i7BNH
RAM 16 GB DDR4
OS Ubuntu 16.04

Gripper

Type 3D printed, parallel rail
Motor Dynamixel AX-12A

Sensors

Lidar Front SICK TiM571
Lidar Back SICK TiM571
3D-cam arm Intel RealSense D435
2D-cam gripper Endoscope Cam
3D-cam back Intel RealSense D435

The platform comes with two PCs with hardware drivers installed, which we
replaced by a single Intel NUC i7, because the default processors were outdated
and caused performance issues. This main PC is used to control the base and
arm of the mobile platform, as well as for image processing and task planning.
The KUKA youbot also comes with a Hokuyu 2D-Lidar, which was replaced by
two SICK SICK TiM571, one at the front and one at the back of the robot. They
are used for mapping, localization, navigation and obstacle avoidance.

The standard endeffector of the Youbot was also replaced by a self devel-
oped parallel gripper. The gripper is based on a single Dynamixel servo motor
which is attached to a 3D printed rail. Simple mechanics allow an efficient power
transmission which enables the motor to grasp with its full torque rather than
it being reduced by the lever in the old gripper version. The fin-ray fingers are
custom printed out of rubber filament, making them soft and enabling them to
close around grasped objects. They are also more wide than standard FESTO
fin-ray fingers, so they have an enlarged attack surface and therefore have more
tolerance for very small and/or moving objects.

Both sides of the gripper mount are also used to mount the cameras used for
perception. The main camera is an Intel RealSense D435 which has been chosen
due to its ability to provide a 3D point cloud in short distances. The point of view
can be changed with different arm positions, which enables us to use different
fields of view for the individual tasks. The secondary perception camera is an
endoscope webcam and is used to increase the precision while grasping moving
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objects. Its field of view points directly towards the gripper and therefore enables
better timing of gripper controls.

For an enlarged field of view, an additional Intel RealSense D435 was mounted
at the back of the robot. Combined with the front camera and specific arm
positions, the barriertape detection can be used while moving both for- and
backwards.

The robots inventory consists of three identical 3D printed slots. They are
equipped with anti-slip pads, which prevent any movement of the objects, even
with heavy robot vibrations. The individual slots are mounted on an adaptable
rail system, which enables various mounting positions.

A WLAN-router is mounted the back of the robot to connect the platform
and the main PC. It is also used to connect to the refbox or to developer PCs.

4 Software Description

We use different open source software packages to compete in the contests. Image
processing is handled with OpenCV library (2D image processing and object
recognition) and PCL (3D image processing). For mapping and navigation we
use gmapping and navigation-stack ROS-packages1. Additionally robot-pose-ekf
package is used for fusing the data from the IMU and the wheel encoders, to
provide more accurate data to the navigation and localization system.

The main software packages are based on ROS and explained in the following
sections. These include the state machine (chapter 4.1), global and local localiza-
tion (chapter 4.2) and packages for perception (chapter 4.3) and manipulation
(chapter 4.4). We also improved the rotating table approach (chapter 4.5).

To perform the transportation logistics, a task planner node processes the
orders received from the referee box and calculates the best route considering
the maximum transport capacity and distances between the workstations. This
module finds the optimal solution for up to seven objects. For more objects,
the algorithm is simplified to reduce computation time, while generating only
slightly worse orders.

4.1 State Machine

The main control of the robot is coordinated over the state machine in Fig. 2.
It starts with an initialization state where the robot receives the map and tries
to localize itself on it. From there, it moves to the “stateIdle” and waits for
new tasks to perform. The Referee Box provides the orders which are processed
by the task planner node and sent to the state machine divided into a vector
of smaller subtasks. The subtasks Move, Grasp, Delivery, PreciseDelivery and
RotatingTable are now managed in the “stateRunning”. Once every subtask is
finished it returns to the “stateIdle” to wait again for new tasks to perform.

The first subtask is usually a Move action performed over the navigation
node. Depending on the required accuracy on the localization, the robot may

1 http://wiki.ros.org/
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Fig. 2: Global overview of the AutonOHM State Machine

execute a fine navigation approach. Both modules are explained in section 4.2.
After an specific workstation location is reached, the robot may look for a spe-
cific object, container or cavity on the workstation. In case of a Grasp subtask,
the exact pose of the desired object is identified. For Delivering an object, the
robot must recognize the exact pose of containers or cavities for PreciseDelivery.
Once the desired pose is located, the arm manipulation is activated, whether for
picking up and storing the object on the robot or for delivering it. The percep-
tion and manipulation nodes are explained in sections 4.3 and 4.4 respectively.
In case of a RotatingTable subtask, before grasping an object, a preprocessing
step to determine objects velocity and pose in the table is required (section 4.5).
Once the manipulation subtask is finished, the robot moves away from the ser-
vice area and returns to the “stateNextSubtask” that will manage the following
subtask to do.

In addition, most of the states have error handling behaviors that manage re-
covery actions such as in case a navigation goal is not reachable, an object cannot
be found or a grasping was unsuccessful. It is important to notice these failures
and react to them by repeating the action or triggering planning modifications.
The state machine framework can be found on GitHub under our laboratory’s
repository.2

4.2 Navigation and Localization

For localization in the arena, we use our own particle filter algorithm. Its func-
tionality is close to amcl localization, as described in [1] and [4]. The algorithm is
capable of using two laser scanners and an omnidirectional movement model. Due
to the Monte Carlo filtering approach, our localization is robust and accurate
enough to provide useful positioning data to the navigation system. Positioning
error with our particle filter is about 6 cm, depending on the complexity and
speed of the actual movement.

For more accurate positioning, such as approximation to service areas and
moving left and right to find the objects on them, we use an approach based on

2 https://github.com/autonohm/obviously
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Fig. 3: The Running state is divided into substates where the SubTasks are
managed

the front laser scanner data. Initially, the robot is positioned by means of the
particle filter localization and ROS navigation. If the service area is not visible
in the laser scan due to its small height, the robot is moved to the destination
pose using particle filter localization and two separate controllers for x and y
movement. If the service area is high enough, RANSAC algorithm [2] is used
to detect the workstation in the laser scan. Out of this, the distance and angle
relative to the area are computed. Using this information, the robot moves in a
constant distance along the workstation. We achieved a mean positioning error
of under 3 cm during a navigation benchmark tests performed in the European
Robotics League local tournament in Milan.

4.3 Perception

This section introduces the implemented nodes for the different perception tasks.
The object detection is presented first. Subsequent the detection of the barrier
tape is described. Finally the box detection is depicted.

Object Detection: To grasp objects reliably, a stable object recognition is
required. For this purpose, an IntelR© RealSenseTMD435 RGB-D camera is used.

Firstly, the robot navigates to a pregrasp position. Once the base reaches
this position, the arm is positioned above the service area. Due to the limited
field of view, the robot base moves first left, then right so all the objects in the
workstation can be discovered.
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On each position, the plane of the service area is searched in the point cloud
using the RANSAC [2] algorithm. Afterwards the detected points are projected
to the 2D-RGB image and used as a mask to segment the objects in the 2D-image
(Fig.4 a and b).

(a) (b) (c)

Fig. 4: Segmentation mask: The projected point cloud to camera’s RGB image
(a). Filled border and morphological operations (b). Classified objects (c).

As all workstations have a white surface, the canny edge detector is used in
order to find the concave border of the object in the segmented images for a more
accurate result. To classify an object, the following features are extracted: length,
width, area, circle factor, corners count, height and black area. The distance to
the workstation surface and the camera calibration matrix is used to calculate
distance invariant values. With the help of a kNN classifier and the extracted
features, the similarity to each previously trained item is calculated. With this
information and the inventory information from the referee box, the best possible
fitting combination for the detected object on the workstation is searched. To
estimate the location of the object, its mass center is calculated. For the rotation
of the object, the main axis of inertia is computed and used. The robot will now
move in front of the elected object and activate the object recognition again
to obtain a more accurate gripping pose. For the newly introduced challenge
of unknown orientation of the objects, the objects are trained from all possible
orientations. The corresponding height of the detected object will be passed
to the manipulation node for correct grasping. The use of the same features
of the corresponding objects is an advantage of this approach. The features of
black area and height are not considered, as they are not needed for a successful
classification.

Barrier Tape Detection: Yellow/black barrier tapes are used to mark re-
stricted areas in the RoboCup@Work competition. If the robot crosses this tape
the team is penalized with point deduction.

In order to detect this barrier tape the camera image is transformed in bird’s-
eye perspective. Next the image is filtered by RGB and HSV values, which
correspond with the yellow part of the barrier tape. For the next step the HU-
Moments are calculated and compared to filter out false shapes. Afterwards the
detected shapes are transformed and saved in a global map. This gives the robot



8 Team Description Paper 2019 Team AutonOHM

(a)
(b) (c)

Fig. 5: Barrier Tape Detection: Camera image of the barrier tape (a) Birdview
(b) Filter for yellow RGB and HSV values and HU-Moments (c)

the ability to avoid the barrier tape even it is not visible in the camera image
anymore.

Box Detection: Some of the tasks require an object placement into a blue or a
red box (see Fig. 6a). The boxes are easily distinguishable from the background
because of their color. Therefore a different strategy is used instead of the de-
scribed object detection in section 4.3. The advantage is a faster detection of
the drop point. In front of the workstation the robot arm is moved in order to
position the camera in a 45◦ angle to the workstation. Subsequently the point
cloud is filtered by the color of the searched box (Fig. 6c). If the filtered point
cloud is too small, the robot drives closer to the workstation. If no colored points
could be detected, the robot will move to the left side first, then to the right
side, until a significant amount of points is found. After that the mass center of
the filtered point cloud is calculated and passed to the manipulation node as the
drop point for the object.

(a)
(b) (c)

Fig. 6: Box Detection: Blue and red box on workstation (a). Point cloud of work-
station (b). Red filtered point cloud and mass center (c).
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4.4 Manipulation

The manipulation controller is responsible for arm and gripper controls, as well
as for inventory management. It provides interfaces for arm positions, grasping
or placing tasks and for linear arm movements.

At the beginning of a grasp or placement process, it receives the target pose
from the perception node. A self developed algorithm for the inverse kinematics
and interpolation plans a linear and orthogonal trajectory to the workstation, ob-
ject or container. This prevents the gripper from accidentally touching or moving
other objects lying on the workstation. Safety behaviors have been implemented
during the grasping and placing process to ensure a reliable object handling and
inventory management. In specific cases where objects are lost, the affected in-
ventory slot is blocked to further use. The inventory state is broadcasted, so it
can be used e.g. by the task planner.

For 2018, the placement process for the shelf workstations was adapted to
the changes in the rulebook. Placing an object below the shelf is higher rewarded
than placing it on top, because its more likely to cause a collision with parts of the
sensor head attached to the gripper. Therefore, a custom placement trajectory
has been added to ensure safe operation in the enclosed space below the shelf.
Additionally, the grasping process for moved objects was modified to enable more
accurate timing and placement of the TCP. Both improvements contributed to
increase scores in the competition.

The gripper controller consists of two separated nodes. The driver node runs
a microcontroller program which is connected to the Dynamixel servo motors.
It initializes and controls the motors position, torque and speed. The microcon-
troller is connected to the main PC via USB and offers an interface for motor
controls and parameter settings. The gripper controller node runs on the main
PC and offers dynamic reconfigure options and the grasping services used by the
manipulation controller and other nodes. It uses the current torque applied to
the motor to determine if an object has been grasped. The torque feedback is
also used to prevent the motor from overcurrents by reducing the torque in case
of high loads.

Fig. 7: Precise placement of ob-
jects.

Fig. 8: Placing an object below the
shelf without causing a collision.
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4.5 Rotating Turntable

(a) (b)

Fig. 9: Rotating Turn Table: Robot in front of the rotating turntable grasping
an object (a) All data points, given by the object recognition, and the result of
the determined circular paths of all objects on the turntable with different grasp
points (red marked) (b).

The following algorithm considers various parameters such as the rotation
speed, rotating direction and the pose of each object on the table to determine
grasping position and timing.

The robot first navigates to the rotating turntable and extends the manip-
ulator arm to an object detection position. Only performed once, an object
recognition preprocessing approach is started to obtain the rotating table speed
and the direction of rotation. First, the 2D position, the time stamp and the type
of incoming objects into the camera visual field are recorded over a defined time.
Second, the gathered data is used to determine objects circular paths, defining
specific grasping position for each circular path. Figure 9b shows a result of this
process determining four circular paths with four different grasping positions
(red marked).

With the collected data points of each circular path, a RANSAC-based al-
gorithm [2] calculates the rotation speed of the table, its center (blue marked
in Fig. 9b) and the radius of each determined path. Having all necessary infor-
mation and making use of the previously recorded time stamps, it is possible
to estimate an approximate moment, when each object passes the object grasp-
ing position. To achieve an accurate grasping, an additional stereoscope RGB
camera has been attached on top of the manipulator. A background change al-
gorithm is now applied to the image in order to detect the object entrance in the
camera view. The previously calculated circular path velocity is used to close
the gripper at the right moment.

Using the implemented feedback of the gripper, the robot recognizes whether
grasping was successful or has failed. In case of success, the object is placed on
the robot and the manipulator then moves over the next circular path to grasp
the remaining objects. If the grasping fails, the manipulator stays in the position
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and waits one more time until the same object arrives at the RGB camera. If
this retry fails again, the robot tries to grasp the next object on the rotating
turntable.

5 Conclusion and Future Work

This paper described the participation of team AutonOHM in the RoboCup-
@work league. It contains detailed information of the current hardware setup
and software packages like navigation, perception and manipulation.

To enable the new team to participate this year and defend the @work cham-
pions title, we are building a new mobile platform. In this transition process, the
gripper mechanism will be optimized to ensure reliable torque detection. Also
our battery and power supply will be improved to meet longer runtimes needed
for the finals or long-term tests.

The software will be refactored, so it can be used on the new system. During
this process, the object detection will be enhanced by a neuronal network for
more stable classification of the objects. In addition, the barriertape detection
will be slightly adapted to be more versatile regarding camera angle and lighting.
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