
Tech United Eindhoven @Home
2019 Team Description Paper

M.F.B. van der Burgh , J.J.M. Lunenburg, L.L.A.M. van Beek, J. Geijsberts,
L.G.L. Janssen, S. Aleksandrov, K. Dang, H.W.A.M. van Rooy, A.T. Hofkamp,

D. van Dinther, A. Aggarwal and M.J.G. van de Molengraft

Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

http://www.techunited.nl, techunited@tue.nl,

https://github.com/tue-robotics

Abstract. This paper provides an overview of the main developments of
the Tech United Eindhoven RoboCup @Home team. Tech United uses an
advanced world modeling representation system called the Environment
Descriptor. It allows straightforward implementation of localization, nav-
igation, exploration, object detection & recognition, object manipulation
and robot-robot cooperation skills based on the most recent state of
the world. Recent developments are improved object and people detec-
tion via deep learning methods, a generic GUI for different user levels,
improved speech recognition, improved natural language interpretation,
sound source localization and the integration of a Telegram interface,
combined with a conversation engine.

1 Introduction

Tech United Eindhoven1 is the RoboCup student team of Eindhoven Univer-
sity of Technology2 that (since 2005) successfully competes in the robot soccer
Middle Size League (MSL) and later (2011) also joined the ambitious @Home
League. The Tech United @Home team has multiple vice World championship
titles, two in the last three years, and is the vice European champion of the 2018
RoboCup German Open. Tech United Eindhoven consists of (former) PhD and
MSc. students and staff members from different departments within the Eind-
hoven University of Technology.

Many parts of our software are interacting with the world-model. Our world-
model, Environment Descriptor, is a database with 3D representations of ob-
jects. This is described in section 2. Other topics described in this paper are
image recognition, pose detection, sound source localisation, Human-Robot in-
teraction, Software sharing and community contributions.

1 http://www.techunited.nl
2 http://www.tue.nl



2 Tech United Eindhoven

The previous years our focus has been on our own robots, AMIGO and SERGIO.
This year we are shifting our focus to the Toyota HSR. This Team Description
Paper is part of the qualification package for RoboCup 2019 in Sydney, Aus-
tralia and describes the current status of the @Home activities of Tech United
Eindhoven.

2 Environment Descriptor (ED)

The TU/e Environment Descriptor (ED) is a Robot Operating System (ROS)
based 3D geometric, object-based world representation system for robots. In
itself ED is a database system that structures multi-modal sensor information
and represents this in an object-based world representation that can be utilized
for robot localisation, navigation, manipulation and interaction functions. Figure
1 shows a schematic overview of ED.

ED has been used on our robots AMIGO and SERGIO in the OPL for many
years and is now also used on the Toyota HSR in DSPL. In previous years,
developments have been focussed on making ED platform independent. As a
result ED has been used on the PR2 system, Turtlebot and Dr. Robot systems
(X80). Also multiple other @Home teams have been using ED. ED is a single

Fig. 1. Schematic overview of TU/e Environment Descriptor.

re-usable environment description that can be used for a multitude of desired
functionalities instead of having different environment representations for lo-
calization, navigation, manipulation, interaction, etc.. An improvement in this
single, central world model will reflect in the performances of the separate robot
capabilities. It omits updating and synchronization of multiple world models. At
the moment different ED plugins exist that enable robots to localize themselves,
update positions of known objects based on recent sensor data, segment and



Tech United Eindhoven @Home 2019 Team Description Paper 3

store newly encountered objects and visualize all this in RViz and through a
web-based GUI, illustrated in Figure 7.

Fig. 2. A view of the world model created with ED. The figure shows the occupation
grid as well as classified objects recognized on top of the cabinet.

2.1 Localization, Navigation and Exploration

The ed localization3 plugin implements AMCL based on a 2D render from the
central world model. In order to navigate, a model of the environment is required.
This model is stored in ED. From this model, a planning representation is derived
that enables using the model of the environment for navigation purposes.
With use of the ed navigation plugin4, an occupancy grid is derived from the
world model and published. This grid can be used by a motion planner to perform
searches in the configuration space of the robot.
With the use of the cb base navigation package5 the robots are able to deal with
end goal constraints. With use of a ROS service, provided by the ed navigation
plugin, an end goal constraint can be constructed w.r.t. a specific world model
entity described by ED. This enables the robot to not only navigate to poses
but also to areas or entities in the scene. Navigation to an area is also shown
in Figure 2. Somewhat modified versions of the local and global ROS planners
available within move base are used.

3 https://github.com/tue-robotics/ed_localization
4 https://github.com/tue-robotics/ed_navigation
5 https://github.com/tue-robotics/cb_base_navigation



4 Tech United Eindhoven

2.2 Object detection

Detection & Segmentation ED enables integrating sensors through the use
of the plugins present in the ed sensor integration package. Two different plugins
exist: 1. The laser plugin: Enables tracking of 2D laser clusters. This plugin can
be used to track dynamic obstacles such as humans. 2. The kinect plugin: Enables
world model updates with use of data from a RGBD camera. This plugin exposes
several ROS services that realize different functionalities:

(a) Segment: A service that segments sensor data that is not associated with
other world model entities. Segmentation areas can be specified per entity
in the scene. This allows to segment object ‘on-top-of’ or ‘in’ a cabinet. All
points outside the segmented area are ignore for segmentation.

(b) FitModel: A service that fits the specified model in the sensor data of a
RGBD camara. This allows updating semi-static obstacles such as tables
and chairs.

The ed sensor integration plugins enable updating and creating entities. How-
ever, new entities are classified as unknown entities. Classification is done in
ed perception plugin6 package.

2.3 Object grasping, moving and placing

As for manipulating objects, the architecture is only focused on grasping. The
input is the specific target entity in the world model ED. The output is the
grasp motion, i.e. joint positions for all joints in the kinematic chain over time.
Figure 3 shows the grasping pipeline. A python executive queries the current

Fig. 3. Custom grasping pipeline base on ED, MoveIt and a separate grasp point
determination and approach vector node.

pose of the entity from the world model. The resulting grasp pose goes to the
grasp precompute component which makes sure that the object is approached
in a proper way. MoveIt will produce joint trajectories over time with use of the
current configuration, the URDF model, collision meshes from ED and the final
configuration.

6 https://github.com/tue-robotics/ed_perception



Tech United Eindhoven @Home 2019 Team Description Paper 5

The grasping pipeline is extended with an empty spot designator and grasp-
ing pose determination. The empty spot designator searches in an area, like
‘on-top-of’of the dinner table, for an empty spot to place an object by using the
occupied area by other objects in this area.
The grasp pose determination uses the information about the position and shape
of the object in ED to determine the best grasping pose. The grasping pose is
a vector relative to the robot. An example of the determined grasping pose is
shown in Figure 4.

Fig. 4. Grasping pose determination result for a cylindric object. It is unpreferred to
grasp the object from behind.

3 Image Recognition

The image recognition packages apply state of the art image classification tech-
niques based on Convolution Neural Networks (CNN).

3.1 Object recognition using Deep Learning

Object recognition is done using TensorflowTM by retraining the top-layer of a
Inception V3 neural network. The top layers are retrained on a custom dataset
using a soft-max top-layer that maps the image representation on a specified set
of labels.
In order to create a new training set for specific objects the image recognition
packages contain several tools for annotating objects. Tools for retraining neural
networks are also included.



6 Tech United Eindhoven

3.2 Face recognition

Face detection and recognition is done using OpenFace7 based on Torch. Open-
Face is an existing state-of-the-art face recognition library. We implemented a
ROS node that enables the use of these advanced technologies within the ROS
network.

3.3 ROS packages

Our image recognition ROS packages can be found on GitHub8 together with
tutorials and documentation. Recently, they have also been added to the ROS
Kinetic package list and can be installed as Debian packages: ros-kinetic-image-
recognition

4 Pose detection

Pose detection is done with OpenPose9. OpenPose is a real-time multi-person
keypoint detection library for body, face, and hands. It’s used for example in the
restaurant challenge to detect waving persons. We have used it to detect pointing
of an operator to objects in a room. For that we ray-traced the vector of the
arm in our world model and extracted the first object that the ray intersects.
This enables the robot to understand commands like: “Give me that object”.
See figure 5 for an example of the ray-tracing.

Fig. 5. Ray-tracing based on pose detection
7 https://cmusatyalab.github.io/openface/
8 https://github.com/tue-robotics/image_recognition
9 https://github.com/CMU-Perceptual-Computing-Lab/openpose



Tech United Eindhoven @Home 2019 Team Description Paper 7

5 Sound source localization

To perform proper speech recognition, knowing the direction of the sound is
important to capture the sound source properly. We localize the sound source
by determining the direction of arrival (DOA) with use of the microphones of
the Matrix Creator10. The detection is done by first calculating the time cross
correlation between four pairs of opposing microphones. Second, the microphone
pair with the lowest phase shift w.r.t. the opposing microphone is selected as
being perpendicular to the source. Finally, the direction of the source can be
determined by combining this information with the energy level of the micro-
phones. This upgrade compared to the stock DOA code of the Matrix Creator
has been pushed back to their repositories. Our software for the DOA detection
is available on GitHub11, as well as a ROS package12 that exposes the DOA
detections via a pose topic. Because the DSPL doesn’t allow hardware changes
to the robot, this software needs to be re-implemented for the Toyota HSR.

6 Human-Robot Interface

The acceptance of a robot is largely determined by the interaction with it. Hence,
we try to have multiple ways of interacting with the robot in an intuitive man-
ner. The two highlighted in this paper are our WebGUI, subsection 6.1, and
TelegramTM interface, subsection 6.2, which uses our conversation engine, sub-
section 6.3.

6.1 Web GUI

In order to interact with the robot, apart from speech, we have designed a web-
based Graphical User Interface (GUI). The interface uses HTML513 and which
we host on the robot itself. This allows multiple users on different platforms
(e.g. Android, iOS) to access functionalities of the robot. The interface is im-
plemented in JavaScript with AngularJS and it offers a graphical interface to
the Robot API14 which exposes all the functionality of the robot. Figure 6 gives
an overview of the connections between these components. Figure 7 gives an
example of various user interactions that are possible with the GUI and the
different commands that can be given to the robot while interacting with the
virtual scene.

10 https://creator.matrix.one
11 https://github.com/tue-robotics/matrix-creator-hal
12 https://github.com/tue-robotics/matrix_creator_ros
13 https://github.com/tue-robotics/tue_mobile_ui
14 https://github.com/tue-robotics/robot-api



8 Tech United Eindhoven

Fig. 6. Overview of the WebGUI architecture. The robot’s functionalities are exposed
with the Robot API that is implemented in JavaScript. A webserver that is hosting
the GUI connects this Robot API to a graphical interface that is offered to multiple
clients on different platforms.

Fig. 7. Illustration of the 3D scene of the WebGUI. Users can interact with use of the
menu that appears when long pressing an object in the scene. On the left figure, the
user commands the robot to inspect the selected object, which is the ‘cabinet’. When
the robot has inspected the ‘cabinet’, it has found entities on top of it. In the middle
figure a grasp command is given to the robot to pick up an object from the cabinet.
The last figure show the robot executing that action.

6.2 TelegramTM

The telegram interface15to our robots is a ROS wrapper around the python-
telegram-bot library. The software exposes four topics. It accepts both text and
images to and from the robot. To communicate with the robot you need to send
/start. As the interface allows only one master of the robot at a time.

The interface itself doesn’t contain any reasoning. This is all done by the
conversation engine, which is described in the following subsection.

6.3 Conversation Engine

The conversation engine16 bridges the gap between text input and an action
planner (called action server). Text can be received from either Speech-to-Text
or from a chat interface, like TelegramTM. The text is parsed according to a

15 https://github.com/tue-robotics/telegram_ros
16 https://github.com/tue-robotics/conversation_engine



Tech United Eindhoven @Home 2019 Team Description Paper 9

(Feature) Context Free Grammar, resulting in an action description in the form
of a nested mapping. In the action description, (sub)actions and their parameters
are filled in. This may include references such as ‘it’.

Based on the action description, the action server tries to devise a sequence
of actions and parameterize those with concrete object IDs. It may be that more
information is needed (e.g. “Place a coke on the dinner table”). The action then
fails for this reason and then the conversation engine must interact with the user
to obtain the missing information (e.g. “Where should I pick that up?”).

When the user supplies more information, the input is parsed and the current
action description is extended and retried. To parse the additional information
to fill in gaps of missing info, the conversation engine must know what field
of missing information (e.g. ‘source-location’ of a ‘grab’ action) must be parsed
according to what rules. The conversation engine is therefore parameterized with
a mapping that links fields containing e.g. ‘location’ to a rule in the grammar
called ‘LOCATION’.

Lastly, it keeps the user ‘informed’ while actions are being performed by
reporting on the current subtask.

7 Re-usability of the system for other research groups

Tech United takes great pride in creating and maintaining open-source software
and hardware to accelerate innovation. Tech United initiated the Robotic Open
Platform website17, to share hardware designs. All our software is available on
GitHub18. All packages include documentation and tutorials. Tech United and
its scientific staff have the capacity to co-develop (15+ people), maintain and
assist in resolving questions.

8 Community Outreach and Media

Tech united has organised 3 tournaments: Dutch Open 2012, RoboCup 2013 and
the European Open 2016. Our team member Loy van Beek has been a member of
the Technical Committee during the period: 2014-2017. We also carry out many
promotional activities for children to promote technology and innovation. Tech
United often visits primary and secondary schools, public events, trade fairs and
has regular TV appearances. Each year, around 50 demos are given and 25k
people are reached through live interaction. Tech United also has a very active
website19, and interacts on many social media like: Facebook20, Instagram21,

17 http://www.roboticopenplatform.org
18 https://github.com/tue-robotics
19 http://www.techunited.nl
20 https://www.facebook.com/techunited
21 https://www.instagram.com/techunitedeindhoven



10 Tech United Eindhoven

YouTube22, Twitter23 and Flickr24. Our robotics videos are often shared on the
IEEE video Friday website.

Bibliography

References

1. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

2. D. Fox. Adapting the sample size in particle filters through kld-sampling. The
International Journal of Robotics Research, 22(12):985–1003, 2003.

3. D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Magazine on Robotics & Automation, 4(1):23–33, 1997.

22 https://www.youtube.com/user/TechUnited
23 https://www.twitter.com/TechUnited
24 https://www.flickr.com/photos/techunited



Tech United Eindhoven @Home 2019 Team Description Paper 11

9 HSR’s Software and External Devices

Fig. 8. The ToyotaTM

HSR Robot, HERO

We use a standard ToyotaTM HSR robot. To differ-
entiate our unit, we named it HERO. We wanted to
link it’s name to our AMIGO and SERGIO domestic
service robots.

HERO’s Software Description An overview
of the software used by the Tech United Eind-
hoven @Home robots can be found in Table 1.
All our software is developed open-source at
GitHub25.

Table 1. Software overview

Operating system Ubuntu 16.04 LTS Server
Middleware ROS Kinetic [1]
Simulation Gazebo
World model Environment Descriptor (ED), custom

https://github.com/tue-robotics/ed

Localization Monte Carlo [2] using Environment Descriptor (ED), custom
https://github.com/tue-robotics/ed_localization

SLAM Gmapping
Navigation CB Base navigation

https://github.com/tue-robotics/cb_base_navigation

Global: custom A* planner
Local: modified ROS DWA [3]

Arm navigation MoveIt!
Object recognition Tensorflow ROS

https://github.com/tue-robotics/image_recognition/

tree/master/tensorflow_ros

People detection Custom implementation using contour matching
https://github.com/tue-robotics/ed_perception

Face detection & recogni-
tion

Openface ROS
https://github.com/tue-robotics/image_recognition/

tree/master/openface_ros

Speech recognition Julius Speech Recognition
https://github.com/julius-speech/julius

Speech synthesis ToyotaTM Text-to-Speech
Task executors SMACH

https://github.com/tue-robotics/tue_robocup

25 https://github.com/tue-robotics



12 Tech United Eindhoven

This is our current software implementation, which matches our own robots,
AMIGO and SERGIO, which have participated with in the open platform league.

External Devices HERO relies on the following external hardware:

– Official Standard Laptop

Cloud Services HERO connects the following cloud services: None


