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Abstract. Team eR@sers has taken part in RoboCup@Home since 2008.
The eR@sers achieved a first place at RoboCup 2008 ,2010 and second
place RoboCup 2009, 2012, 2017 and its social robot HSR obtained the
@Home Innovation Award in 2016. We are one of the oldest teams in
the RoboCup tournament. We have improved the ability of robots with
various techniques, which are going to be applied to other robot systems
or social IT systems. We introduce them and our latest research briefly
in this description paper.

1 Team Summary

Team eR@sers was formed around 2000 to participate in RoboCup 4 legged
league. The eR@sers achieved a first place at RoboCup 2008 ,2010 and second
place RoboCup 2009, 2012, 2017. The Japanese Robot Team eR@sers(erasers)
is the result of a joint effort of four Japanese research groups.

We mainly focus on the adaptability to the environmental changes, and on
the integration between the sensory-motor data and symbolic representation,
utilizing only the neuro-dynamical model.

All developed functions could be packed in ROS modules.
Almost all training data would be real data and the system is performed and

evaluated in the real environment.

2 Innovative technology and scientific contribution

2.1 Symbol emergence in robotics

Symbol emergence in robotics (SER) [1] is an active research area, which we
started around 2010. In the idea behind the SER, each robot (agent) acquires
concepts and symbols (language) through interaction with its surrounding phys-
ical world and other agents. Learning is considered as a bottom-up process,
therefore unsupervised learning methods are involved in this approach, where
Multi-modalities is another important aspect.

The framework of the SER can be realized using hierarchical Bayesian mod-
eling and/or deep learning methods. The SER achieves true understanding of
words meanings by robots, which means the symbol grounding problem can be
solved. This also suggests that the general purpose service robot (GPSR) task
can be completed in a real sense. Actual methodologies will be explained later.
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GPSR [4] We developed a method through which domestic service robots
can comprehend natural language instructions. The proposed method combines
action-type classification, which is based on a support vector machine, and slot
extraction, which is based on conditional random fields, both of which are re-
quired in order for a robot to execute an action.

Further, by considering the co-occurrence relationship between the action
type and the slots along with the speech recognition score, the proposed method
can avoid degradation of the robot’s comprehension accuracy in noisy environ-
ments, where inaccurate speech recognition can be problematic.

2.2 Applicability of the approach in the real world

We have already implemented above mentioned methods and, currently, we are
working on integrating everything as a whole system. It is very important to
consider the applicability of the proposed approach in the real world. We have
tested the idea of concept formation and language acquisition for about one
month [5].

We are planning to test the proposal (SER + web-enable concepts) in the
real home environment. Fortunately, we have several experimental homes, which
can be used for the long-term test. We also think that participation at the
RoboCup@Home is a good opportunity to evaluate the proposed framework.

2.3 RoboCup@Home Simulation

Not only RoboCup@Home but also RoboCup Soccer, Robocop Rescue, and other
leagues tend to evaluate physical actions such as grasping, navigation, object
tracking, and object/speech recognition because it is easy to evaluate them with
objective sensor signals or ground truth data. However, evaluating the quality
of human-robot interaction, such as the impressions of an individual user and
whether a robot utterance is easy to understand, involve dealing with cogni-
tive events, which are difficult to observe as objective sensor signals. One of
the ultimate aims of RoboCup@Home is to realize intelligent personal robots
that operate in daily life. While evaluating such social and cognitive functions
is important, tasks for real competitions with time and space limitations can-
not be designed for such evaluation. For example, using questionnaires is one
conventional method for evaluating the social and cognitive functions of robots;
however, this is difficult in real competitions because the number of samples that
can be obtained is quite small.

Therefore, we propose a novel platform for competition design that can be
used to evaluate the social and cognitive functions of intelligent robots through
VR simulation. First, we have proposed a novel software platform that integrates
ROS and Unity middleware to realize a seamless development environment for
VR interaction between humans and robots[6]. Second, we have proposed two
tasks as examples of task design for evaluating social and cognitive functions,
which is ’Interactive Cleanup’ and ’Human Navigation’ tasks. They aim sta-
tistical evaluation of human-robot interaction in VR. Especially, the Human
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(a) Interactive Cleanup task

(b) Human Navigation task (c) Virtual Environment of RoboCup@Home Simulation

Fig. 1. RoboCup@Home Simulation

Navigation task is proposed to observe and evaluate human behavior in terms
of the quality of robot utterances.

2.4 Tracking and re-identification using self-supervised learning

These days, many techniques using CNN (convolutional neural network) such
as YOLO (You Only Look Once), Mask R-CNN, and OpenPose are proposed,
which enables to detect object or people on line. However, their training pro-
cess requires long time and huge amount of labelled images. In some situations,
a service robot may need to memorize a person, furniture, etc. that are new
to it. Retraining such kind of classifiers cannot achieve this via human-robot
interaction.

Our idea is, instead of using a detector trained for specific classes, to con-
struct detectors, trackers, etc. based on an image feature extractor. Although
SIFT and SURF are widely used for image processing, they are not sufficiently
robust because they extract only local features. Instead, we use CNN with self-
supervised learning[7] as an image feature extractor.

In training process, this model attempts to colorize video frames. Instead
of directly select a color for a pixel, it embeds the target pixel into a feature
space, selects a source pixel in a previous frame that is similar to the target
pixel in terms of a metric in the feature space, and copy the color from the
source pixel. By minimizing the error of color prediction, the embedding vectors
corresponding to the same part in a video get close to one another in the feature
space.

2.5 Learning non-parametric policies as random variable
transformations [8]

Learning how to act under uncertainty is a central problem in the field of ma-
chine learning. Particularly, it is desired for robots to learn to generate contin-
uous control signals. One of major approaches to attack this problem is policy
gradient, which explicitly represents the policy and attempts to find the opti-
mal one. Although this makes it straightforward to generate continuous action
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Fig. 2. Model Overview: Given gray-scale frames, the model computes low-
dimensional embeddings for each location with a CNN. Using softmax similarity, the
model points from the target frame into the reference frame embeddings (solid yellow
arrow). The model then copies the color back into the predicted frame (dashed yellow
arrow). After learning, we use the pointing mechanism as a visual tracker. Note that
the model’s pointer is soft, but for illustrations purposes we draw it as a single arrow.

are allowed to train with supervised data, even for the unsupervised task. In this
paper, our goal is tolearn only from unlabeled video. At test time, we tackle task
A, which specifies the region ofinterest to track. However, we call our method
unsupervised because we do not learn with any labeled data.

3 Self-supervised Tracking
We first describe how to train our model for video colorization, then discuss how
to use it for tracking. See Figure 2 for a high level illustration of our model.

3.1 Model
Let ci ∈R d be the true color for pixeli in the reference frame, and letcj ∈R d

be the true color for a pixelj in the target frame. We denoteyj ∈R d as the
model’s prediction forcj . The model predictsyj as a linear combination of colors
in the reference frame:

yj =
i

A ij ci (1)

where A is a similarity matrix between the target and reference frame such
that the rows sum to one. Several similarity metrics are possible. We use inner
product similarity normalized by softmax:

A ij = exp f T
i f j

k exp f T
k f j

(2)

where f i ∈RD is a low-dimensional embedding for pixeli that is estimated by
a convolutional neural network. Since we are computing distances between all
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Fig. 2. Tracking/re-identification system using self-supervised learning

value, the policy is confined to a particular family of distributions such as nor-
mal distributions due to the difficulty of drawing action values from arbitrary
probability distributions. To get rid of this limitation, we propose a method to
learn non-parametric policy without any concern about generating action values.

Our approach, shown in Fig.3, is to find a transformation from a random
variable nt (following a normal distribution for simplicity), whose distribution
is known, to one that follows desired distribution.

Consider a random variable transformation from nt to the action value at

depending on the state value st, namely,

at = f(st,nt;θ), (1)

where θ is the parameter vector of the function approximator.

In this case, the form of the distribution of at can vary depending on st and θ.
In particular, the distribution can be multimodal if the function approximator is
sufficiently expressive. Once one find f such that at follows desired distribution,
samples of the distribution can easily be drawn by calculating f .

In the field of reinforcement learning, the goal is to maximize the expected
reward w.r.t. the stochastic policy. To deal with the random variable transfor-
mation, we used Dirac’s delta to represent the action distribution:



Team eR@sers[DSPL] 2019 Team Description Paper 5

State s

Noise n

Action a

Random Variable

Transformation

n

a = f(s,n;θ)

p(n)
p(a||ss))

Agent

Environment

TransformationTransformation

Random VariableRandom Variable

Reward

Non-
parametric

Fig. 3. A schematic illustration of our approach. Action value a is calculated from
the state value s and noise n. The function f of them is learned to acquire a desired
distribution of a. The optimization is performed with respect not to the value of n but
to the distribution of n.

P (a|s,n) = δ(a− f(s,n;θ)), which yields the expected reward to be maxi-
mized:

E[r|θ] =

∫∫

R(s,a)P (a|s)daP (s)ds (2)

=

∫∫∫

R(s,a)δ(a− f(s,n;θ))P (n)dndaP (s)ds, (3)

where R(s,a) =
∫

rP (r|s,a)dr with the reward r.
Using generalized stoke’s theory, we derived the gradient of E[r|θ] w.r.t.

elements of θ, which yields an update rule

θi ← θi − αr (Dvi
logPn(n) + div vi) , (4)

vi =

(

∂

∂n⊤
f(s,n;θ)

)−1
∂

∂θi
f(s,n;θ) (5)

where α denotes the learning late.
Note that this update rule has a differential operator (divx =

∑

j

∂xj

∂nj
),

and accordingly the second order derivative of f is to be calculated. For one-
dimensional case, the update rule can be written as

θi ← θi − αr
((log p(n))′fn − fnn)fθi + fnfnθi

f2
n

(6)

where fξ (resp. fξζ) denotes partial derivative
∂
∂ξ
f (resp. ∂2

∂ξ∂ζ
f).

Although its implementation can be involved according to the complexity of
the function f , the automatic differentiation technique (e.g. provided in Tensor-
Flow) can be utilized to achieve simple codes.

We trained a fully-connected four-layer neural network, whose input and
output are n and a respectively, and whose weight parameters are constrained
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t = 0 t = 1000 t = 5000

Fig. 4. A numerical experiment. The input noise n was drawn from N(0, 1), which is
indicated by dashed curves (the horizontal axes are shared by n and a). The histograms
show the distribution of a = f(n). The solid curves show the reward function r =

0.7e−(a+1)2/4 + 0.7e−(a−1)2/4
− 1.5e−a2/2.

to be non-negative. The frequency of a around zero decreased to avoid negative
reward, whereas that around ±2 increased pursuing the reward. This shows that
a bimodal distribution can be acquired with our algorithm, and also suggests its
potential to achieve a variety of distributions depending on the problem. We are
currently applying our algorithm to neural networks with state input, to deal
with control problems and to achieve social behaviors through learning with our
robot.

2.6 Active robot-object interaction [9]

We use a multimodal system for active robot-object interaction using laser-based
SLAM, RGBD images, and contact sensors. In the object manipulation task, the
robot adjusts its initial pose with respect to obstacles and target objects through
RGBD data so it can perform object grasping in different configuration spaces
while avoiding collisions, and updates the information related to the last steps of
the manipulation process using the contact sensors in its hand. We compare our
approach with a number of baselines, namely a no-feedback method and visual-
only and tactile-only feedback methods, where our proposed visual-and-tactile
feedback method performs best.

We propose an active object manipulation systems using a 3-DOF RGBD
camera (height, pan and tilt movements) on top of a service robot and a 6-axis
force sensor in the hand. Through this sensors, the robot is able to detect the
obstacle’s position and orientation in robot coordinates while the different states
of the manipulation process take place.

In particular, the robot arrives near the dishwasher within an uncertainty
given by the localisation system based on 2D laser scans, but with a localisa-
tion error big enough to affect the performance in the dishwasher’s door handle
grasping step using only the arm’s inverse kinematics. Therefore, we propose the
use of the upper RGBD camera to update the robot’s relative position to the
dishwasher and to locate the handle, and then we use the contact sensor in the
robot manipulator to detect when the robot reaches it.
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3 Contribution for RoboCup@Home

Starting from 2006, RoboCup@Home has been the largest international annual
competition for autonomous service robots as part of the RoboCup initiative.

However, it is observed that the development curve of the RoboCup@Home
teams have a very steep start. The amount of technical knowledge and resources
(both manpower and cost) required to start a new team has made the event
exclusive to only established research organizations. For instance, in domestic
RoboCup Japan Open challenge, the participating teams in RoboCup@Home
were merely around 10 teams, which are about the same teams for the past few
years. There were actually several new team requests however the development
gap was huge for them to even complete the construction of the robots.

For this reason, RoboCup@Home Education initiative had been started at
RoboCup Japan in 2015. RoboCup@Home Education is an educational initiative
in RoboCup@Home that promotes educational efforts to boost RoboCup@Home
participation and service robot development. Under this initiative, currently
there are 3 projects started in Japan:

1. RoboCup@Home Education Challenge at RoboCup AsiaPacific2017 Bangkock.
2. RoboCup@Home Education Challenge at RoboCup Japan Open sice 2014.
3. Development of an educational Open Robot Platform for RoboCup@Home
4. We host RoboCup@Home EducationWorkshop Roma, Italy,March 15–16,2017

https://sites.google.com/dis.uniroma1.it/athomeedu-rome2017/home

5. Outreach programs (domestic workshops, international academic exchanges,
etc.)

(For more information, visit http://www.robocupathomeedu.org/)

4 The contents of the web site

Official website:
https://sites.google.com/site/erasers2050/home/

Photos and Videos of the robot:
https://sites.google.com/site/erasers2050/photos-movies/
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